admko commited on
Commit
694e0ed
·
1 Parent(s): b293e54

End of training

Browse files
Files changed (3) hide show
  1. README.md +110 -134
  2. pytorch_model.bin +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -3,8 +3,6 @@ license: apache-2.0
3
  base_model: distilbert-base-uncased-finetuned-sst-2-english
4
  tags:
5
  - generated_from_trainer
6
- datasets:
7
- - sembr2023
8
  metrics:
9
  - precision
10
  - recall
@@ -12,29 +10,7 @@ metrics:
12
  - accuracy
13
  model-index:
14
  - name: sembr2023-distilbert-base-uncased-finetuned-sst-2-english
15
- results:
16
- - task:
17
- name: Token Classification
18
- type: token-classification
19
- dataset:
20
- name: sembr2023
21
- type: sembr2023
22
- config: sembr2023
23
- split: test
24
- args: sembr2023
25
- metrics:
26
- - name: Precision
27
- type: precision
28
- value: 0.7586922044650481
29
- - name: Recall
30
- type: recall
31
- value: 0.8214238541804253
32
- - name: F1
33
- type: f1
34
- value: 0.7888127853881278
35
- - name: Accuracy
36
- type: accuracy
37
- value: 0.9610840374434667
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,16 +18,16 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # sembr2023-distilbert-base-uncased-finetuned-sst-2-english
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the sembr2023 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2474
48
- - Precision: 0.7587
49
- - Recall: 0.8214
50
- - F1: 0.7888
51
- - Iou: 0.6513
52
- - Accuracy: 0.9611
53
- - Balanced Accuracy: 0.8980
54
- - Overall Accuracy: 0.9477
55
 
56
  ## Model description
57
 
@@ -82,106 +58,106 @@ The following hyperparameters were used during training:
82
 
83
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Iou | Accuracy | Balanced Accuracy | Overall Accuracy |
84
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|:-----------------:|:----------------:|
85
- | 0.3897 | 0.07 | 10 | 0.3850 | 0 | 0.0 | 0.0 | 0.0 | 0.9115 | 0.5 | 0.9115 |
86
- | 0.3601 | 0.14 | 20 | 0.3418 | 1.0 | 0.0004 | 0.0008 | 0.0004 | 0.9116 | 0.5002 | 0.9116 |
87
- | 0.2757 | 0.21 | 30 | 0.2744 | 0.6671 | 0.5083 | 0.5770 | 0.4054 | 0.9341 | 0.7418 | 0.9209 |
88
- | 0.2047 | 0.28 | 40 | 0.2280 | 0.7233 | 0.6809 | 0.7015 | 0.5402 | 0.9487 | 0.8278 | 0.9318 |
89
- | 0.1837 | 0.35 | 50 | 0.1949 | 0.7986 | 0.6699 | 0.7286 | 0.5731 | 0.9558 | 0.8268 | 0.9434 |
90
- | 0.1611 | 0.42 | 60 | 0.1878 | 0.8071 | 0.6990 | 0.7492 | 0.5989 | 0.9586 | 0.8414 | 0.9431 |
91
- | 0.1584 | 0.49 | 70 | 0.1802 | 0.7399 | 0.7600 | 0.7498 | 0.5997 | 0.9551 | 0.8670 | 0.9385 |
92
- | 0.1336 | 0.56 | 80 | 0.1738 | 0.7851 | 0.7500 | 0.7671 | 0.6222 | 0.9597 | 0.8650 | 0.9434 |
93
- | 0.1261 | 0.62 | 90 | 0.1709 | 0.7548 | 0.7675 | 0.7611 | 0.6143 | 0.9574 | 0.8717 | 0.9405 |
94
- | 0.1165 | 0.69 | 100 | 0.1630 | 0.7831 | 0.7531 | 0.7678 | 0.6232 | 0.9597 | 0.8664 | 0.9454 |
95
- | 0.1082 | 0.76 | 110 | 0.1515 | 0.8101 | 0.7574 | 0.7829 | 0.6432 | 0.9628 | 0.8701 | 0.9493 |
96
- | 0.1174 | 0.83 | 120 | 0.1667 | 0.7765 | 0.7951 | 0.7857 | 0.6470 | 0.9616 | 0.8865 | 0.9446 |
97
- | 0.0845 | 0.9 | 130 | 0.1568 | 0.7959 | 0.7900 | 0.7929 | 0.6569 | 0.9635 | 0.8852 | 0.9487 |
98
- | 0.0794 | 0.97 | 140 | 0.1640 | 0.7868 | 0.7774 | 0.7821 | 0.6422 | 0.9617 | 0.8785 | 0.9463 |
99
- | 0.0749 | 1.04 | 150 | 0.1594 | 0.7833 | 0.7958 | 0.7895 | 0.6522 | 0.9625 | 0.8872 | 0.9506 |
100
- | 0.0689 | 1.11 | 160 | 0.1534 | 0.7977 | 0.7840 | 0.7908 | 0.6540 | 0.9633 | 0.8824 | 0.9491 |
101
- | 0.0623 | 1.18 | 170 | 0.1700 | 0.7633 | 0.8189 | 0.7901 | 0.6530 | 0.9615 | 0.8971 | 0.9459 |
102
- | 0.0673 | 1.25 | 180 | 0.1673 | 0.7642 | 0.8090 | 0.7860 | 0.6474 | 0.9610 | 0.8924 | 0.9469 |
103
- | 0.0739 | 1.32 | 190 | 0.1629 | 0.7554 | 0.8272 | 0.7897 | 0.6525 | 0.9610 | 0.9006 | 0.9477 |
104
- | 0.0743 | 1.39 | 200 | 0.1664 | 0.7611 | 0.8223 | 0.7906 | 0.6536 | 0.9614 | 0.8986 | 0.9466 |
105
- | 0.0718 | 1.46 | 210 | 0.1631 | 0.7602 | 0.8093 | 0.7840 | 0.6447 | 0.9605 | 0.8922 | 0.9488 |
106
- | 0.0619 | 1.53 | 220 | 0.1731 | 0.7628 | 0.8264 | 0.7933 | 0.6575 | 0.9619 | 0.9007 | 0.9457 |
107
- | 0.059 | 1.6 | 230 | 0.1569 | 0.8138 | 0.7813 | 0.7972 | 0.6628 | 0.9648 | 0.8820 | 0.9518 |
108
- | 0.0558 | 1.67 | 240 | 0.1585 | 0.8178 | 0.7751 | 0.7959 | 0.6610 | 0.9648 | 0.8792 | 0.9525 |
109
- | 0.0598 | 1.74 | 250 | 0.1771 | 0.7667 | 0.8241 | 0.7944 | 0.6589 | 0.9623 | 0.8999 | 0.9472 |
110
- | 0.0511 | 1.81 | 260 | 0.1577 | 0.7825 | 0.7996 | 0.7910 | 0.6542 | 0.9626 | 0.8890 | 0.9513 |
111
- | 0.0527 | 1.88 | 270 | 0.1621 | 0.7839 | 0.8021 | 0.7929 | 0.6569 | 0.9629 | 0.8903 | 0.9494 |
112
- | 0.0575 | 1.94 | 280 | 0.1737 | 0.7491 | 0.8286 | 0.7868 | 0.6486 | 0.9603 | 0.9008 | 0.9491 |
113
- | 0.0449 | 2.01 | 290 | 0.1781 | 0.7709 | 0.8200 | 0.7947 | 0.6593 | 0.9625 | 0.8982 | 0.9478 |
114
- | 0.0378 | 2.08 | 300 | 0.1830 | 0.7542 | 0.8216 | 0.7864 | 0.6481 | 0.9605 | 0.8978 | 0.9463 |
115
- | 0.0364 | 2.15 | 310 | 0.1812 | 0.7657 | 0.8227 | 0.7932 | 0.6573 | 0.9620 | 0.8992 | 0.9495 |
116
- | 0.0366 | 2.22 | 320 | 0.1854 | 0.7594 | 0.8231 | 0.7900 | 0.6529 | 0.9613 | 0.8989 | 0.9493 |
117
- | 0.0395 | 2.29 | 330 | 0.1812 | 0.7613 | 0.8217 | 0.7903 | 0.6533 | 0.9614 | 0.8983 | 0.9483 |
118
- | 0.0433 | 2.36 | 340 | 0.2007 | 0.7442 | 0.8321 | 0.7857 | 0.6471 | 0.9598 | 0.9022 | 0.9446 |
119
- | 0.0346 | 2.43 | 350 | 0.1811 | 0.7791 | 0.8077 | 0.7931 | 0.6572 | 0.9627 | 0.8927 | 0.9491 |
120
- | 0.0281 | 2.5 | 360 | 0.1785 | 0.7884 | 0.7999 | 0.7941 | 0.6585 | 0.9633 | 0.8895 | 0.9505 |
121
- | 0.0339 | 2.57 | 370 | 0.1797 | 0.7789 | 0.8087 | 0.7935 | 0.6578 | 0.9628 | 0.8932 | 0.9506 |
122
- | 0.0351 | 2.64 | 380 | 0.1903 | 0.7576 | 0.8250 | 0.7898 | 0.6527 | 0.9612 | 0.8997 | 0.9480 |
123
- | 0.0378 | 2.71 | 390 | 0.1874 | 0.7737 | 0.8103 | 0.7916 | 0.6551 | 0.9623 | 0.8937 | 0.9484 |
124
- | 0.0328 | 2.78 | 400 | 0.2010 | 0.7647 | 0.8164 | 0.7897 | 0.6525 | 0.9615 | 0.8960 | 0.9468 |
125
- | 0.0285 | 2.85 | 410 | 0.1796 | 0.7649 | 0.8197 | 0.7913 | 0.6547 | 0.9618 | 0.8976 | 0.9492 |
126
- | 0.0333 | 2.92 | 420 | 0.1832 | 0.7716 | 0.8169 | 0.7936 | 0.6578 | 0.9624 | 0.8967 | 0.9497 |
127
- | 0.0235 | 2.99 | 430 | 0.1868 | 0.7806 | 0.8012 | 0.7908 | 0.6539 | 0.9625 | 0.8897 | 0.9500 |
128
- | 0.0336 | 3.06 | 440 | 0.1936 | 0.7569 | 0.8190 | 0.7867 | 0.6484 | 0.9607 | 0.8968 | 0.9483 |
129
- | 0.0241 | 3.12 | 450 | 0.2237 | 0.7543 | 0.8226 | 0.7870 | 0.6488 | 0.9606 | 0.8983 | 0.9453 |
130
- | 0.0319 | 3.19 | 460 | 0.2139 | 0.7719 | 0.8095 | 0.7903 | 0.6533 | 0.9620 | 0.8932 | 0.9473 |
131
- | 0.0271 | 3.26 | 470 | 0.2016 | 0.7492 | 0.8233 | 0.7845 | 0.6454 | 0.9600 | 0.8983 | 0.9466 |
132
- | 0.022 | 3.33 | 480 | 0.2127 | 0.7348 | 0.8324 | 0.7806 | 0.6401 | 0.9586 | 0.9016 | 0.9462 |
133
- | 0.0198 | 3.4 | 490 | 0.2018 | 0.7848 | 0.8050 | 0.7948 | 0.6595 | 0.9632 | 0.8918 | 0.9508 |
134
- | 0.0194 | 3.47 | 500 | 0.2058 | 0.7583 | 0.8226 | 0.7892 | 0.6517 | 0.9611 | 0.8986 | 0.9489 |
135
- | 0.023 | 3.54 | 510 | 0.2216 | 0.7325 | 0.8385 | 0.7819 | 0.6419 | 0.9586 | 0.9044 | 0.9454 |
136
- | 0.0185 | 3.61 | 520 | 0.2160 | 0.7516 | 0.8276 | 0.7878 | 0.6499 | 0.9605 | 0.9005 | 0.9485 |
137
- | 0.0202 | 3.68 | 530 | 0.2046 | 0.7743 | 0.8091 | 0.7913 | 0.6547 | 0.9622 | 0.8931 | 0.9494 |
138
- | 0.0201 | 3.75 | 540 | 0.2113 | 0.7584 | 0.8198 | 0.7879 | 0.6501 | 0.9610 | 0.8972 | 0.9481 |
139
- | 0.0226 | 3.82 | 550 | 0.2066 | 0.7477 | 0.8267 | 0.7852 | 0.6464 | 0.9600 | 0.8998 | 0.9484 |
140
- | 0.0229 | 3.89 | 560 | 0.2156 | 0.7458 | 0.8296 | 0.7855 | 0.6467 | 0.9599 | 0.9011 | 0.9468 |
141
- | 0.0182 | 3.96 | 570 | 0.2168 | 0.7506 | 0.8245 | 0.7858 | 0.6472 | 0.9602 | 0.8989 | 0.9474 |
142
- | 0.014 | 4.03 | 580 | 0.2095 | 0.7439 | 0.8292 | 0.7843 | 0.6451 | 0.9596 | 0.9008 | 0.9475 |
143
- | 0.0152 | 4.1 | 590 | 0.2262 | 0.7465 | 0.8307 | 0.7863 | 0.6479 | 0.9601 | 0.9016 | 0.9476 |
144
- | 0.0179 | 4.17 | 600 | 0.2271 | 0.7512 | 0.8271 | 0.7873 | 0.6492 | 0.9605 | 0.9003 | 0.9479 |
145
- | 0.0165 | 4.24 | 610 | 0.2290 | 0.7547 | 0.8217 | 0.7868 | 0.6485 | 0.9606 | 0.8979 | 0.9481 |
146
- | 0.0183 | 4.31 | 620 | 0.2282 | 0.7685 | 0.8152 | 0.7912 | 0.6545 | 0.9619 | 0.8957 | 0.9488 |
147
- | 0.0182 | 4.38 | 630 | 0.2289 | 0.7428 | 0.8312 | 0.7845 | 0.6454 | 0.9596 | 0.9016 | 0.9462 |
148
- | 0.0169 | 4.44 | 640 | 0.2202 | 0.7576 | 0.8227 | 0.7888 | 0.6513 | 0.9610 | 0.8986 | 0.9494 |
149
- | 0.0146 | 4.51 | 650 | 0.2198 | 0.7692 | 0.8132 | 0.7906 | 0.6537 | 0.9619 | 0.8948 | 0.9499 |
150
- | 0.0147 | 4.58 | 660 | 0.2330 | 0.7497 | 0.8243 | 0.7852 | 0.6464 | 0.9601 | 0.8988 | 0.9470 |
151
- | 0.0167 | 4.65 | 670 | 0.2296 | 0.7574 | 0.8237 | 0.7892 | 0.6518 | 0.9611 | 0.8990 | 0.9481 |
152
- | 0.013 | 4.72 | 680 | 0.2425 | 0.7547 | 0.8222 | 0.7870 | 0.6488 | 0.9606 | 0.8981 | 0.9468 |
153
- | 0.0156 | 4.79 | 690 | 0.2361 | 0.7493 | 0.8288 | 0.7870 | 0.6488 | 0.9603 | 0.9009 | 0.9460 |
154
- | 0.0133 | 4.86 | 700 | 0.2284 | 0.7579 | 0.8205 | 0.7880 | 0.6501 | 0.9609 | 0.8975 | 0.9473 |
155
- | 0.0184 | 4.93 | 710 | 0.2496 | 0.7420 | 0.8313 | 0.7842 | 0.6449 | 0.9595 | 0.9016 | 0.9448 |
156
- | 0.0144 | 5.0 | 720 | 0.2292 | 0.7618 | 0.8159 | 0.7879 | 0.6501 | 0.9611 | 0.8956 | 0.9479 |
157
- | 0.0144 | 5.07 | 730 | 0.2430 | 0.7643 | 0.8146 | 0.7886 | 0.6510 | 0.9614 | 0.8951 | 0.9475 |
158
- | 0.0128 | 5.14 | 740 | 0.2343 | 0.7603 | 0.8169 | 0.7876 | 0.6496 | 0.9610 | 0.8960 | 0.9482 |
159
- | 0.0117 | 5.21 | 750 | 0.2359 | 0.7669 | 0.8122 | 0.7889 | 0.6514 | 0.9615 | 0.8941 | 0.9479 |
160
- | 0.0131 | 5.28 | 760 | 0.2477 | 0.7521 | 0.8245 | 0.7866 | 0.6483 | 0.9604 | 0.8990 | 0.9463 |
161
- | 0.0153 | 5.35 | 770 | 0.2500 | 0.7547 | 0.8198 | 0.7859 | 0.6474 | 0.9605 | 0.8970 | 0.9463 |
162
- | 0.0108 | 5.42 | 780 | 0.2470 | 0.7531 | 0.8226 | 0.7863 | 0.6479 | 0.9604 | 0.8982 | 0.9465 |
163
- | 0.011 | 5.49 | 790 | 0.2483 | 0.7610 | 0.8165 | 0.7878 | 0.6498 | 0.9611 | 0.8958 | 0.9474 |
164
- | 0.0101 | 5.56 | 800 | 0.2454 | 0.7569 | 0.8212 | 0.7877 | 0.6498 | 0.9608 | 0.8978 | 0.9470 |
165
- | 0.0132 | 5.62 | 810 | 0.2402 | 0.7705 | 0.8098 | 0.7897 | 0.6524 | 0.9618 | 0.8932 | 0.9485 |
166
- | 0.0116 | 5.69 | 820 | 0.2496 | 0.7503 | 0.8253 | 0.7860 | 0.6475 | 0.9602 | 0.8993 | 0.9465 |
167
- | 0.0096 | 5.76 | 830 | 0.2448 | 0.7621 | 0.8163 | 0.7883 | 0.6505 | 0.9612 | 0.8958 | 0.9476 |
168
- | 0.0154 | 5.83 | 840 | 0.2447 | 0.7545 | 0.8220 | 0.7868 | 0.6485 | 0.9606 | 0.8980 | 0.9469 |
169
- | 0.0112 | 5.9 | 850 | 0.2414 | 0.7565 | 0.8214 | 0.7876 | 0.6496 | 0.9608 | 0.8979 | 0.9475 |
170
- | 0.0154 | 5.97 | 860 | 0.2425 | 0.7615 | 0.8159 | 0.7877 | 0.6498 | 0.9611 | 0.8955 | 0.9479 |
171
- | 0.0097 | 6.04 | 870 | 0.2448 | 0.7569 | 0.8202 | 0.7873 | 0.6492 | 0.9608 | 0.8973 | 0.9475 |
172
- | 0.0086 | 6.11 | 880 | 0.2444 | 0.7585 | 0.8189 | 0.7876 | 0.6496 | 0.9609 | 0.8968 | 0.9477 |
173
- | 0.0114 | 6.18 | 890 | 0.2450 | 0.7606 | 0.8197 | 0.7891 | 0.6516 | 0.9612 | 0.8973 | 0.9476 |
174
- | 0.0098 | 6.25 | 900 | 0.2479 | 0.7588 | 0.8208 | 0.7886 | 0.6510 | 0.9611 | 0.8977 | 0.9473 |
175
- | 0.0137 | 6.32 | 910 | 0.2476 | 0.7604 | 0.8197 | 0.7889 | 0.6514 | 0.9612 | 0.8973 | 0.9477 |
176
- | 0.0153 | 6.39 | 920 | 0.2468 | 0.7595 | 0.8198 | 0.7885 | 0.6509 | 0.9611 | 0.8973 | 0.9478 |
177
- | 0.0099 | 6.46 | 930 | 0.2461 | 0.7600 | 0.8190 | 0.7884 | 0.6508 | 0.9611 | 0.8970 | 0.9478 |
178
- | 0.0106 | 6.53 | 940 | 0.2458 | 0.7593 | 0.8193 | 0.7882 | 0.6504 | 0.9610 | 0.8971 | 0.9478 |
179
- | 0.0114 | 6.6 | 950 | 0.2461 | 0.7591 | 0.8200 | 0.7884 | 0.6507 | 0.9610 | 0.8974 | 0.9478 |
180
- | 0.013 | 6.67 | 960 | 0.2468 | 0.7587 | 0.8206 | 0.7885 | 0.6508 | 0.9610 | 0.8976 | 0.9477 |
181
- | 0.0108 | 6.74 | 970 | 0.2475 | 0.7579 | 0.8214 | 0.7884 | 0.6507 | 0.9610 | 0.8980 | 0.9476 |
182
- | 0.0138 | 6.81 | 980 | 0.2475 | 0.7584 | 0.8214 | 0.7887 | 0.6511 | 0.9610 | 0.8980 | 0.9477 |
183
- | 0.0101 | 6.88 | 990 | 0.2475 | 0.7587 | 0.8214 | 0.7888 | 0.6513 | 0.9611 | 0.8980 | 0.9477 |
184
- | 0.0085 | 6.94 | 1000 | 0.2474 | 0.7587 | 0.8214 | 0.7888 | 0.6513 | 0.9611 | 0.8980 | 0.9477 |
185
 
186
 
187
  ### Framework versions
 
3
  base_model: distilbert-base-uncased-finetuned-sst-2-english
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - precision
8
  - recall
 
10
  - accuracy
11
  model-index:
12
  - name: sembr2023-distilbert-base-uncased-finetuned-sst-2-english
13
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
18
 
19
  # sembr2023-distilbert-base-uncased-finetuned-sst-2-english
20
 
21
+ This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2242
24
+ - Precision: 0.8042
25
+ - Recall: 0.8338
26
+ - F1: 0.8187
27
+ - Iou: 0.6930
28
+ - Accuracy: 0.9660
29
+ - Balanced Accuracy: 0.9066
30
+ - Overall Accuracy: 0.9529
31
 
32
  ## Model description
33
 
 
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Iou | Accuracy | Balanced Accuracy | Overall Accuracy |
60
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|:-----------------:|:----------------:|
61
+ | 0.3902 | 0.06 | 10 | 0.3870 | 0 | 0.0 | 0.0 | 0.0 | 0.9080 | 0.5 | 0.9080 |
62
+ | 0.3064 | 0.12 | 20 | 0.3030 | 1.0 | 0.0024 | 0.0048 | 0.0024 | 0.9083 | 0.5012 | 0.9083 |
63
+ | 0.2489 | 0.18 | 30 | 0.2335 | 0.7510 | 0.6056 | 0.6705 | 0.5043 | 0.9453 | 0.7926 | 0.9288 |
64
+ | 0.1931 | 0.24 | 40 | 0.1983 | 0.7924 | 0.6957 | 0.7409 | 0.5884 | 0.9552 | 0.8386 | 0.9385 |
65
+ | 0.1417 | 0.3 | 50 | 0.1830 | 0.8148 | 0.7208 | 0.7649 | 0.6193 | 0.9593 | 0.8521 | 0.9412 |
66
+ | 0.1581 | 0.36 | 60 | 0.1756 | 0.8102 | 0.7475 | 0.7776 | 0.6361 | 0.9607 | 0.8649 | 0.9430 |
67
+ | 0.1572 | 0.42 | 70 | 0.1681 | 0.7986 | 0.7811 | 0.7898 | 0.6526 | 0.9618 | 0.8806 | 0.9440 |
68
+ | 0.1304 | 0.48 | 80 | 0.1617 | 0.7915 | 0.7978 | 0.7946 | 0.6593 | 0.9621 | 0.8883 | 0.9442 |
69
+ | 0.1203 | 0.55 | 90 | 0.1554 | 0.8233 | 0.7706 | 0.7961 | 0.6612 | 0.9637 | 0.8769 | 0.9471 |
70
+ | 0.1249 | 0.61 | 100 | 0.1782 | 0.7805 | 0.8080 | 0.7940 | 0.6584 | 0.9614 | 0.8925 | 0.9423 |
71
+ | 0.1212 | 0.67 | 110 | 0.1502 | 0.8589 | 0.7550 | 0.8036 | 0.6717 | 0.9661 | 0.8712 | 0.9494 |
72
+ | 0.0883 | 0.73 | 120 | 0.1555 | 0.8076 | 0.8120 | 0.8098 | 0.6803 | 0.9649 | 0.8962 | 0.9457 |
73
+ | 0.0921 | 0.79 | 130 | 0.1561 | 0.8156 | 0.7936 | 0.8044 | 0.6729 | 0.9645 | 0.8877 | 0.9471 |
74
+ | 0.112 | 0.85 | 140 | 0.1444 | 0.7773 | 0.8389 | 0.8069 | 0.6763 | 0.9631 | 0.9073 | 0.9485 |
75
+ | 0.0858 | 0.91 | 150 | 0.1530 | 0.8258 | 0.7806 | 0.8026 | 0.6702 | 0.9647 | 0.8820 | 0.9490 |
76
+ | 0.076 | 0.97 | 160 | 0.1355 | 0.8478 | 0.7679 | 0.8059 | 0.6749 | 0.9660 | 0.8770 | 0.9537 |
77
+ | 0.0891 | 1.03 | 170 | 0.1468 | 0.8333 | 0.7996 | 0.8161 | 0.6893 | 0.9669 | 0.8917 | 0.9512 |
78
+ | 0.0727 | 1.09 | 180 | 0.1394 | 0.8659 | 0.7685 | 0.8143 | 0.6868 | 0.9678 | 0.8782 | 0.9543 |
79
+ | 0.0707 | 1.15 | 190 | 0.1396 | 0.8585 | 0.7792 | 0.8170 | 0.6906 | 0.9679 | 0.8831 | 0.9546 |
80
+ | 0.0827 | 1.21 | 200 | 0.1365 | 0.8231 | 0.8098 | 0.8164 | 0.6898 | 0.9665 | 0.8961 | 0.9542 |
81
+ | 0.0628 | 1.27 | 210 | 0.1629 | 0.8189 | 0.8157 | 0.8173 | 0.6910 | 0.9665 | 0.8987 | 0.9507 |
82
+ | 0.0544 | 1.33 | 220 | 0.1490 | 0.8179 | 0.8182 | 0.8181 | 0.6921 | 0.9665 | 0.8999 | 0.9536 |
83
+ | 0.0581 | 1.39 | 230 | 0.1618 | 0.7956 | 0.8346 | 0.8147 | 0.6873 | 0.9651 | 0.9065 | 0.9489 |
84
+ | 0.0508 | 1.45 | 240 | 0.1583 | 0.8032 | 0.8191 | 0.8111 | 0.6822 | 0.9649 | 0.8994 | 0.9526 |
85
+ | 0.0477 | 1.52 | 250 | 0.1524 | 0.8149 | 0.8223 | 0.8186 | 0.6929 | 0.9665 | 0.9017 | 0.9544 |
86
+ | 0.0493 | 1.58 | 260 | 0.1518 | 0.8422 | 0.7969 | 0.8190 | 0.6934 | 0.9676 | 0.8909 | 0.9551 |
87
+ | 0.0586 | 1.64 | 270 | 0.1635 | 0.8112 | 0.8194 | 0.8153 | 0.6881 | 0.9658 | 0.9000 | 0.9510 |
88
+ | 0.0438 | 1.7 | 280 | 0.1819 | 0.7835 | 0.8446 | 0.8129 | 0.6848 | 0.9642 | 0.9105 | 0.9479 |
89
+ | 0.0544 | 1.76 | 290 | 0.1781 | 0.8208 | 0.8190 | 0.8199 | 0.6947 | 0.9669 | 0.9004 | 0.9505 |
90
+ | 0.0527 | 1.82 | 300 | 0.1547 | 0.8213 | 0.8157 | 0.8185 | 0.6927 | 0.9667 | 0.8988 | 0.9538 |
91
+ | 0.0449 | 1.88 | 310 | 0.1603 | 0.8095 | 0.8301 | 0.8197 | 0.6944 | 0.9664 | 0.9051 | 0.9533 |
92
+ | 0.0556 | 1.94 | 320 | 0.1627 | 0.7995 | 0.8312 | 0.8151 | 0.6879 | 0.9653 | 0.9051 | 0.9519 |
93
+ | 0.0459 | 2.0 | 330 | 0.1525 | 0.8324 | 0.7990 | 0.8153 | 0.6882 | 0.9667 | 0.8913 | 0.9542 |
94
+ | 0.0401 | 2.06 | 340 | 0.1915 | 0.7856 | 0.8469 | 0.8151 | 0.6879 | 0.9647 | 0.9117 | 0.9480 |
95
+ | 0.0384 | 2.12 | 350 | 0.1791 | 0.8060 | 0.8282 | 0.8169 | 0.6905 | 0.9659 | 0.9040 | 0.9512 |
96
+ | 0.0358 | 2.18 | 360 | 0.1831 | 0.8265 | 0.8084 | 0.8174 | 0.6911 | 0.9668 | 0.8956 | 0.9515 |
97
+ | 0.0263 | 2.24 | 370 | 0.1735 | 0.8188 | 0.8118 | 0.8153 | 0.6882 | 0.9662 | 0.8968 | 0.9515 |
98
+ | 0.0313 | 2.3 | 380 | 0.1828 | 0.7911 | 0.8408 | 0.8152 | 0.6880 | 0.9649 | 0.9091 | 0.9510 |
99
+ | 0.0323 | 2.36 | 390 | 0.1760 | 0.8245 | 0.8194 | 0.8219 | 0.6977 | 0.9673 | 0.9008 | 0.9542 |
100
+ | 0.034 | 2.42 | 400 | 0.1693 | 0.8306 | 0.8032 | 0.8167 | 0.6901 | 0.9668 | 0.8933 | 0.9540 |
101
+ | 0.0376 | 2.48 | 410 | 0.1928 | 0.7556 | 0.8576 | 0.8033 | 0.6713 | 0.9614 | 0.9147 | 0.9481 |
102
+ | 0.0312 | 2.55 | 420 | 0.1761 | 0.8197 | 0.8194 | 0.8195 | 0.6942 | 0.9668 | 0.9006 | 0.9537 |
103
+ | 0.0266 | 2.61 | 430 | 0.1805 | 0.8175 | 0.8148 | 0.8161 | 0.6894 | 0.9662 | 0.8982 | 0.9534 |
104
+ | 0.0388 | 2.67 | 440 | 0.2017 | 0.7774 | 0.8571 | 0.8153 | 0.6882 | 0.9643 | 0.9161 | 0.9477 |
105
+ | 0.0337 | 2.73 | 450 | 0.1764 | 0.8145 | 0.8195 | 0.8170 | 0.6906 | 0.9662 | 0.9003 | 0.9530 |
106
+ | 0.0255 | 2.79 | 460 | 0.1786 | 0.8267 | 0.8039 | 0.8152 | 0.6880 | 0.9665 | 0.8934 | 0.9533 |
107
+ | 0.0299 | 2.85 | 470 | 0.1844 | 0.8048 | 0.8343 | 0.8193 | 0.6939 | 0.9662 | 0.9069 | 0.9529 |
108
+ | 0.0264 | 2.91 | 480 | 0.1865 | 0.7909 | 0.8455 | 0.8173 | 0.6910 | 0.9652 | 0.9114 | 0.9526 |
109
+ | 0.0282 | 2.97 | 490 | 0.1816 | 0.8105 | 0.8206 | 0.8155 | 0.6885 | 0.9659 | 0.9006 | 0.9532 |
110
+ | 0.0269 | 3.03 | 500 | 0.1969 | 0.8195 | 0.8178 | 0.8187 | 0.6930 | 0.9667 | 0.8998 | 0.9516 |
111
+ | 0.0258 | 3.09 | 510 | 0.2061 | 0.8070 | 0.8341 | 0.8203 | 0.6954 | 0.9664 | 0.9070 | 0.9513 |
112
+ | 0.0239 | 3.15 | 520 | 0.2138 | 0.7878 | 0.8392 | 0.8127 | 0.6845 | 0.9644 | 0.9082 | 0.9492 |
113
+ | 0.0234 | 3.21 | 530 | 0.1984 | 0.8203 | 0.8153 | 0.8178 | 0.6917 | 0.9666 | 0.8986 | 0.9521 |
114
+ | 0.0188 | 3.27 | 540 | 0.2032 | 0.8081 | 0.8254 | 0.8166 | 0.6901 | 0.9659 | 0.9027 | 0.9513 |
115
+ | 0.0258 | 3.33 | 550 | 0.2045 | 0.7976 | 0.8355 | 0.8162 | 0.6894 | 0.9654 | 0.9070 | 0.9524 |
116
+ | 0.0167 | 3.39 | 560 | 0.2052 | 0.7851 | 0.8389 | 0.8111 | 0.6822 | 0.9641 | 0.9078 | 0.9512 |
117
+ | 0.0203 | 3.45 | 570 | 0.2261 | 0.7912 | 0.8409 | 0.8153 | 0.6882 | 0.9650 | 0.9092 | 0.9489 |
118
+ | 0.0173 | 3.52 | 580 | 0.2094 | 0.7816 | 0.8503 | 0.8145 | 0.6871 | 0.9644 | 0.9131 | 0.9489 |
119
+ | 0.0249 | 3.58 | 590 | 0.2101 | 0.7968 | 0.8394 | 0.8175 | 0.6914 | 0.9655 | 0.9088 | 0.9515 |
120
+ | 0.0198 | 3.64 | 600 | 0.2015 | 0.7947 | 0.8425 | 0.8179 | 0.6919 | 0.9655 | 0.9102 | 0.9516 |
121
+ | 0.0194 | 3.7 | 610 | 0.2160 | 0.7895 | 0.8494 | 0.8184 | 0.6926 | 0.9653 | 0.9132 | 0.9505 |
122
+ | 0.0176 | 3.76 | 620 | 0.2121 | 0.7893 | 0.8434 | 0.8155 | 0.6885 | 0.9649 | 0.9103 | 0.9506 |
123
+ | 0.021 | 3.82 | 630 | 0.2020 | 0.8127 | 0.8282 | 0.8204 | 0.6954 | 0.9666 | 0.9044 | 0.9525 |
124
+ | 0.019 | 3.88 | 640 | 0.2133 | 0.8157 | 0.8266 | 0.8211 | 0.6965 | 0.9669 | 0.9039 | 0.9523 |
125
+ | 0.0184 | 3.94 | 650 | 0.2015 | 0.8056 | 0.8303 | 0.8178 | 0.6917 | 0.9660 | 0.9050 | 0.9536 |
126
+ | 0.0202 | 4.0 | 660 | 0.2126 | 0.8106 | 0.8201 | 0.8153 | 0.6883 | 0.9658 | 0.9004 | 0.9513 |
127
+ | 0.0182 | 4.06 | 670 | 0.2114 | 0.8027 | 0.8320 | 0.8171 | 0.6907 | 0.9657 | 0.9056 | 0.9528 |
128
+ | 0.0174 | 4.12 | 680 | 0.2246 | 0.7973 | 0.8375 | 0.8169 | 0.6905 | 0.9655 | 0.9079 | 0.9511 |
129
+ | 0.0149 | 4.18 | 690 | 0.2140 | 0.8123 | 0.8259 | 0.8190 | 0.6935 | 0.9664 | 0.9033 | 0.9533 |
130
+ | 0.0135 | 4.24 | 700 | 0.2187 | 0.8029 | 0.8329 | 0.8176 | 0.6915 | 0.9658 | 0.9061 | 0.9523 |
131
+ | 0.0202 | 4.3 | 710 | 0.2165 | 0.8118 | 0.8250 | 0.8183 | 0.6925 | 0.9663 | 0.9028 | 0.9530 |
132
+ | 0.0139 | 4.36 | 720 | 0.2203 | 0.8007 | 0.8332 | 0.8167 | 0.6901 | 0.9656 | 0.9061 | 0.9519 |
133
+ | 0.0153 | 4.42 | 730 | 0.2297 | 0.7920 | 0.8429 | 0.8167 | 0.6901 | 0.9652 | 0.9103 | 0.9511 |
134
+ | 0.0144 | 4.48 | 740 | 0.2241 | 0.8090 | 0.8330 | 0.8208 | 0.6961 | 0.9666 | 0.9065 | 0.9527 |
135
+ | 0.0113 | 4.55 | 750 | 0.2218 | 0.8015 | 0.8352 | 0.8180 | 0.6920 | 0.9658 | 0.9071 | 0.9530 |
136
+ | 0.0192 | 4.61 | 760 | 0.2236 | 0.8021 | 0.8376 | 0.8195 | 0.6942 | 0.9661 | 0.9083 | 0.9523 |
137
+ | 0.0162 | 4.67 | 770 | 0.2226 | 0.7928 | 0.8434 | 0.8174 | 0.6911 | 0.9653 | 0.9106 | 0.9521 |
138
+ | 0.0144 | 4.73 | 780 | 0.2188 | 0.8054 | 0.8361 | 0.8204 | 0.6955 | 0.9663 | 0.9078 | 0.9531 |
139
+ | 0.0159 | 4.79 | 790 | 0.2234 | 0.8022 | 0.8359 | 0.8187 | 0.6931 | 0.9660 | 0.9075 | 0.9525 |
140
+ | 0.0136 | 4.85 | 800 | 0.2230 | 0.8033 | 0.8334 | 0.8181 | 0.6921 | 0.9659 | 0.9064 | 0.9529 |
141
+ | 0.0197 | 4.91 | 810 | 0.2239 | 0.8020 | 0.8363 | 0.8188 | 0.6932 | 0.9660 | 0.9077 | 0.9525 |
142
+ | 0.0165 | 4.97 | 820 | 0.2212 | 0.8048 | 0.8339 | 0.8191 | 0.6936 | 0.9661 | 0.9067 | 0.9524 |
143
+ | 0.0146 | 5.03 | 830 | 0.2228 | 0.8071 | 0.8308 | 0.8188 | 0.6932 | 0.9662 | 0.9054 | 0.9528 |
144
+ | 0.0109 | 5.09 | 840 | 0.2255 | 0.8079 | 0.8311 | 0.8193 | 0.6940 | 0.9663 | 0.9055 | 0.9530 |
145
+ | 0.0104 | 5.15 | 850 | 0.2235 | 0.8066 | 0.8316 | 0.8189 | 0.6934 | 0.9662 | 0.9057 | 0.9534 |
146
+ | 0.0152 | 5.21 | 860 | 0.2239 | 0.8051 | 0.8331 | 0.8189 | 0.6933 | 0.9661 | 0.9063 | 0.9532 |
147
+ | 0.0118 | 5.27 | 870 | 0.2242 | 0.8002 | 0.8389 | 0.8191 | 0.6936 | 0.9659 | 0.9088 | 0.9526 |
148
+ | 0.0106 | 5.33 | 880 | 0.2225 | 0.8047 | 0.8334 | 0.8188 | 0.6932 | 0.9661 | 0.9064 | 0.9527 |
149
+ | 0.0127 | 5.39 | 890 | 0.2232 | 0.8017 | 0.8349 | 0.8180 | 0.6920 | 0.9658 | 0.9070 | 0.9526 |
150
+ | 0.0126 | 5.45 | 900 | 0.2246 | 0.8026 | 0.8343 | 0.8181 | 0.6922 | 0.9659 | 0.9067 | 0.9527 |
151
+ | 0.0159 | 5.52 | 910 | 0.2241 | 0.8041 | 0.8343 | 0.8189 | 0.6933 | 0.9661 | 0.9068 | 0.9529 |
152
+ | 0.0182 | 5.58 | 920 | 0.2245 | 0.8060 | 0.8327 | 0.8192 | 0.6937 | 0.9662 | 0.9062 | 0.9529 |
153
+ | 0.0154 | 5.64 | 930 | 0.2251 | 0.8041 | 0.8331 | 0.8184 | 0.6926 | 0.9660 | 0.9063 | 0.9527 |
154
+ | 0.012 | 5.7 | 940 | 0.2245 | 0.8036 | 0.8343 | 0.8186 | 0.6929 | 0.9660 | 0.9068 | 0.9529 |
155
+ | 0.0177 | 5.76 | 950 | 0.2246 | 0.8035 | 0.8344 | 0.8186 | 0.6930 | 0.9660 | 0.9069 | 0.9528 |
156
+ | 0.0162 | 5.82 | 960 | 0.2245 | 0.8040 | 0.8340 | 0.8187 | 0.6931 | 0.9660 | 0.9067 | 0.9529 |
157
+ | 0.0177 | 5.88 | 970 | 0.2243 | 0.8040 | 0.8338 | 0.8186 | 0.6929 | 0.9660 | 0.9066 | 0.9529 |
158
+ | 0.0147 | 5.94 | 980 | 0.2242 | 0.8041 | 0.8336 | 0.8186 | 0.6929 | 0.9660 | 0.9065 | 0.9529 |
159
+ | 0.0123 | 6.0 | 990 | 0.2242 | 0.8042 | 0.8338 | 0.8187 | 0.6930 | 0.9660 | 0.9066 | 0.9529 |
160
+ | 0.0123 | 6.06 | 1000 | 0.2242 | 0.8042 | 0.8338 | 0.8187 | 0.6930 | 0.9660 | 0.9066 | 0.9529 |
161
 
162
 
163
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf7bac646a34addf7fff5109431d48ecf08016223d0f6b5cc8bcb71be1314273
3
  size 265520165
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fa69df9681c32b99b8eead25b723e91c554ae53639328d32ede86f0fb6844cf
3
  size 265520165
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f66a79b0a7696598fe9fac5daf04fb47e0f9fe49ac4d7159ad913d793d42995b
3
  size 4283
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f798d3616fbc0d2ba69b9cc82de9ece969255ffd12cb626c1c7dfe715ec417a
3
  size 4283