File size: 1,935 Bytes
388948a
 
 
bd2093b
388948a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2093b
388948a
bd2093b
 
 
 
 
388948a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2093b
6ffd255
388948a
 
 
 
bd2093b
388948a
 
 
 
 
bd2093b
 
 
388948a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1401
- Accuracy: 0.9583
- Precision: 0.9621
- Recall: 0.9583
- F1: 0.9586

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 9.755035812704661e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 7    | 0.2914          | 0.875    | 0.9038    | 0.875  | 0.8757 |
| No log        | 2.0   | 14   | 0.2127          | 0.9583   | 0.9621    | 0.9583 | 0.9586 |
| No log        | 3.0   | 21   | 0.1401          | 0.9583   | 0.9621    | 0.9583 | 0.9586 |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1