--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1401 - Accuracy: 0.9583 - Precision: 0.9621 - Recall: 0.9583 - F1: 0.9586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.755035812704661e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 7 | 0.2914 | 0.875 | 0.9038 | 0.875 | 0.8757 | | No log | 2.0 | 14 | 0.2127 | 0.9583 | 0.9621 | 0.9583 | 0.9586 | | No log | 3.0 | 21 | 0.1401 | 0.9583 | 0.9621 | 0.9583 | 0.9586 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1