Initial multilingual model deployment
Browse files- .gitattributes +1 -0
- README.md +98 -0
- model.pt +3 -0
- model_config.json +6 -0
- processor_config.json +7 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
- sentiment-analysis
|
6 |
+
- transformers
|
7 |
+
- pytorch
|
8 |
+
- multilingual
|
9 |
+
license: mit
|
10 |
+
---
|
11 |
+
|
12 |
+
# advexon/multilingual-sentiment-classifier
|
13 |
+
|
14 |
+
Multilingual text classification model trained on XLM-RoBERTa base for sentiment analysis across English, Russian, Tajik and other languages
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
This is a multilingual text classification model based on XLM-RoBERTa. It has been trained for sentiment analysis across multiple languages and can classify text into positive, negative, and neutral categories.
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
- **Base Model**: XLM-RoBERTa Base
|
23 |
+
- **Number of Labels**: 3 (Positive, Negative, Neutral)
|
24 |
+
- **Languages**: Multilingual (English, Russian, Tajik, and others)
|
25 |
+
- **Max Sequence Length**: 512 tokens
|
26 |
+
|
27 |
+
## Performance
|
28 |
+
|
29 |
+
Based on training metrics:
|
30 |
+
- **Training Accuracy**: 58.33%
|
31 |
+
- **Validation Accuracy**: 100%
|
32 |
+
- **Training Loss**: 0.94
|
33 |
+
- **Validation Loss**: 0.79
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
### Using the Model
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
41 |
+
import torch
|
42 |
+
|
43 |
+
# Load the model and tokenizer
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("advexon/multilingual-sentiment-classifier")
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained("advexon/multilingual-sentiment-classifier")
|
46 |
+
|
47 |
+
# Example usage
|
48 |
+
text = "This product is amazing!"
|
49 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
50 |
+
outputs = model(**inputs)
|
51 |
+
predictions = torch.softmax(outputs.logits, dim=-1)
|
52 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
53 |
+
|
54 |
+
# Class mapping: 0=Negative, 1=Neutral, 2=Positive
|
55 |
+
sentiment_labels = ["Negative", "Neutral", "Positive"]
|
56 |
+
predicted_sentiment = sentiment_labels[predicted_class]
|
57 |
+
print(f"Predicted sentiment: {predicted_sentiment}")
|
58 |
+
```
|
59 |
+
|
60 |
+
### Example Predictions
|
61 |
+
|
62 |
+
- "I absolutely love this product!" → Positive
|
63 |
+
- "This is terrible quality." → Negative
|
64 |
+
- "It's okay, nothing special." → Neutral
|
65 |
+
- "Отличный сервис!" → Positive (Russian)
|
66 |
+
- "Хунуки хуб нест" → Negative (Tajik)
|
67 |
+
|
68 |
+
## Training
|
69 |
+
|
70 |
+
This model was trained using:
|
71 |
+
- **Base Model**: XLM-RoBERTa Base
|
72 |
+
- **Optimizer**: AdamW
|
73 |
+
- **Learning Rate**: 2e-5
|
74 |
+
- **Batch Size**: 16
|
75 |
+
- **Training Epochs**: 2
|
76 |
+
- **Languages**: English, Russian, Tajik
|
77 |
+
|
78 |
+
## Limitations
|
79 |
+
|
80 |
+
- The model's performance may vary across different languages
|
81 |
+
- It is recommended to fine-tune on domain-specific data for optimal performance
|
82 |
+
- Maximum input length is 512 tokens
|
83 |
+
- Performance may be lower on languages not well-represented in the training data
|
84 |
+
|
85 |
+
## Citation
|
86 |
+
|
87 |
+
If you use this model in your research, please cite:
|
88 |
+
|
89 |
+
```bibtex
|
90 |
+
@misc{multilingual-text-classifier,
|
91 |
+
title={Multilingual Text Classification Model},
|
92 |
+
author={Your Name},
|
93 |
+
year={2024},
|
94 |
+
publisher={Hugging Face},
|
95 |
+
journal={Hugging Face Hub},
|
96 |
+
howpublished={\url{https://huggingface.co/advexon/multilingual-sentiment-classifier}},
|
97 |
+
}
|
98 |
+
```
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cd22b17644ac6c33208e21799831c9636fc015433179e5b8b3cd11b5e55ba66
|
3 |
+
size 1113428295
|
model_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name": "xlm-roberta-base",
|
3 |
+
"num_labels": 3,
|
4 |
+
"dropout_rate": 0.2,
|
5 |
+
"hidden_size": 768
|
6 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_name": "xlm-roberta-base",
|
3 |
+
"max_length": 512,
|
4 |
+
"truncation": true,
|
5 |
+
"padding": true,
|
6 |
+
"label_mapping": {}
|
7 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|