Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- snow_simplified_japanese_corpus
|
| 4 |
+
- mkqa
|
| 5 |
+
- llm-book/aio_v2
|
| 6 |
+
- paws
|
| 7 |
+
- lmqg/qg_jaquad
|
| 8 |
+
- SkelterLabsInc/JaQuAD
|
| 9 |
+
- karakuri-ai/dolly-15k-ja
|
| 10 |
+
- MBZUAI/Bactrian-X
|
| 11 |
+
- GEM/wiki_lingua
|
| 12 |
+
- csebuetnlp/xlsum
|
| 13 |
+
language:
|
| 14 |
+
- ja
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Aerner LM-v2
|
| 19 |
+
|
| 20 |
+
事前学習から全部日本語で学習させたモデルのバージョン2です。
|
| 21 |
+
LLaMAベースで、24GBのVRAMで事前学習できる規模に小さなモデルです。
|
| 22 |
+
|
| 23 |
+
Flash Attentionが使用されているOpenLLaMAを使用しています。
|
| 24 |
+
Wikipediaのデータが中心なので、回答はWikipediaっぽい感じになります。
|
| 25 |
+
|
| 26 |
+
V1に比べると、モノや場所などの概念を持っているようないないような。
|
| 27 |
+
データセットはV1と同じですが、学習ステップ数が76,000と延長。
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
サンプルコード。モデルのロードは少し時間が掛かりますが、Inferenceは結構速いです。
|
| 31 |
+
GenerationConfigが必須。モデルが小さいので、beam searchや repeat関係は結構重要。
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 36 |
+
import torch
|
| 37 |
+
import time
|
| 38 |
+
import random
|
| 39 |
+
import numpy as np
|
| 40 |
+
|
| 41 |
+
#
|
| 42 |
+
# Fix seed
|
| 43 |
+
#
|
| 44 |
+
seed = 42
|
| 45 |
+
|
| 46 |
+
random.seed(seed)
|
| 47 |
+
# Numpy
|
| 48 |
+
np.random.seed(seed)
|
| 49 |
+
# Pytorch
|
| 50 |
+
torch.manual_seed(seed)
|
| 51 |
+
torch.cuda.manual_seed(seed)
|
| 52 |
+
torch.backends.cudnn.deterministic = True
|
| 53 |
+
torch.use_deterministic_algorithms = True
|
| 54 |
+
|
| 55 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
model_id = "aerner/lm-v1"
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
text = """### Instruction:
|
| 63 |
+
東京駅について説明してください。
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
### Context:
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
### Answer:
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 75 |
+
tokenized_input = tokenizer(text, return_tensors="pt").to('cuda')
|
| 76 |
+
|
| 77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
+
model_id, device_map="auto", torch_dtype=torch.bfloat16)
|
| 79 |
+
|
| 80 |
+
generation_config = GenerationConfig(
|
| 81 |
+
max_new_tokens=256,
|
| 82 |
+
min_new_tokens=1,
|
| 83 |
+
early_stopping=True,
|
| 84 |
+
do_sample=True,
|
| 85 |
+
|
| 86 |
+
num_beams=8,
|
| 87 |
+
temperature=1.0,
|
| 88 |
+
top_p=0.6,
|
| 89 |
+
penalty_alpha=0.4,
|
| 90 |
+
no_repeat_ngram_size=4,
|
| 91 |
+
repetition_penalty=1.4,
|
| 92 |
+
|
| 93 |
+
remove_invalid_values=True,
|
| 94 |
+
num_return_sequences=1,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
start = time.time()
|
| 98 |
+
|
| 99 |
+
generation_output = model.generate(
|
| 100 |
+
input_ids=tokenized_input['input_ids'],
|
| 101 |
+
generation_config=generation_config,
|
| 102 |
+
return_dict_in_generate=True,
|
| 103 |
+
output_scores=True,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
for s in generation_output.sequences:
|
| 107 |
+
output = tokenizer.decode(s)
|
| 108 |
+
print(output)
|
| 109 |
+
|
| 110 |
+
print(time.time() - start)
|
| 111 |
+
|
| 112 |
+
```
|
| 113 |
+
|