--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: fresh-2-layer-medmcqa5000-distill-of-fresh-2-layer-gpqa_EVAL_gpqa results: [] --- # fresh-2-layer-medmcqa5000-distill-of-fresh-2-layer-gpqa_EVAL_gpqa This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.7386 - Accuracy: 0.6465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 321 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.64 | 100 | 13.7722 | 0.3384 | | No log | 1.27 | 200 | 11.9604 | 0.4293 | | No log | 1.91 | 300 | 10.3469 | 0.5253 | | No log | 2.55 | 400 | 10.4306 | 0.5657 | | 3.3633 | 3.18 | 500 | 9.3915 | 0.6414 | | 3.3633 | 3.82 | 600 | 8.7386 | 0.6465 | | 3.3633 | 4.46 | 700 | 8.8047 | 0.6212 | | 3.3633 | 5.1 | 800 | 9.3199 | 0.5960 | | 3.3633 | 5.73 | 900 | 8.1435 | 0.6364 | | 0.7294 | 6.37 | 1000 | 8.3517 | 0.6313 | | 0.7294 | 7.01 | 1100 | 8.8800 | 0.6111 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0