Update chartinstruct_flant5_modeling.py
Browse files- chartinstruct_flant5_modeling.py +610 -609
chartinstruct_flant5_modeling.py
CHANGED
|
@@ -1,609 +1,610 @@
|
|
| 1 |
-
from typing import List, Optional, Tuple, Union
|
| 2 |
-
from dataclasses import dataclass
|
| 3 |
-
import copy, os
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
from torch.nn import CrossEntropyLoss
|
| 7 |
-
from transformers import AutoConfig, AutoModelForSeq2SeqLM, \
|
| 8 |
-
T5Config, T5Model, T5ForConditionalGeneration
|
| 9 |
-
|
| 10 |
-
from transformers.models.t5.modeling_t5 import T5Stack
|
| 11 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions
|
| 12 |
-
from transformers.utils import ModelOutput
|
| 13 |
-
from transformers import DonutSwinModel, DonutImageProcessor, DonutSwinConfig
|
| 14 |
-
from abc import ABC, abstractmethod
|
| 15 |
-
import re
|
| 16 |
-
|
| 17 |
-
from transformers import T5PreTrainedModel
|
| 18 |
-
from transformers.models.t5.modeling_t5 import T5Block, T5LayerNorm
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
@dataclass
|
| 22 |
-
class BaseModelOutputWithPastAndCrossAttentionsWithAttentionMask(ModelOutput):
|
| 23 |
-
"""
|
| 24 |
-
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
| 25 |
-
|
| 26 |
-
Args:
|
| 27 |
-
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 28 |
-
Sequence of hidden-states at the output of the last layer of the model.
|
| 29 |
-
|
| 30 |
-
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
| 31 |
-
hidden_size)` is output.
|
| 32 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 33 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 34 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
| 35 |
-
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
| 36 |
-
encoder_sequence_length, embed_size_per_head)`.
|
| 37 |
-
|
| 38 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
| 39 |
-
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
| 40 |
-
input) to speed up sequential decoding.
|
| 41 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 42 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 43 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 44 |
-
|
| 45 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 46 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 47 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 48 |
-
sequence_length)`.
|
| 49 |
-
|
| 50 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 51 |
-
heads.
|
| 52 |
-
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
| 53 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 54 |
-
sequence_length)`.
|
| 55 |
-
|
| 56 |
-
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
| 57 |
-
weighted average in the cross-attention heads.
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
last_hidden_state: torch.FloatTensor = None
|
| 61 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 62 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 63 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 64 |
-
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 65 |
-
attention_mask: Optional[torch.LongTensor] = None
|
| 66 |
-
|
| 67 |
-
class LlavaT5Config(T5Config):
|
| 68 |
-
model_type = "llava_t5"
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
class LlavaT5Stack(T5PreTrainedModel):
|
| 73 |
-
config_class = LlavaT5Config
|
| 74 |
-
|
| 75 |
-
def __init__(self, config, embed_tokens=None):
|
| 76 |
-
super().__init__(config)
|
| 77 |
-
|
| 78 |
-
self.embed_tokens = embed_tokens
|
| 79 |
-
self.is_decoder = config.is_decoder
|
| 80 |
-
|
| 81 |
-
self.block = nn.ModuleList(
|
| 82 |
-
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
| 83 |
-
)
|
| 84 |
-
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
| 85 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
| 86 |
-
|
| 87 |
-
## Vision
|
| 88 |
-
|
| 89 |
-
self.
|
| 90 |
-
self.
|
| 91 |
-
self.
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
self.
|
| 99 |
-
self.
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
#
|
| 114 |
-
#
|
| 115 |
-
# `
|
| 116 |
-
#
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
#
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
image_to_overwrite
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
f"
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
inputs_embeds
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
#
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
#
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
#
|
| 277 |
-
#
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
#
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
#
|
| 355 |
-
# (
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
hidden_states = self.
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
encoder_config
|
| 415 |
-
encoder_config.
|
| 416 |
-
encoder_config.
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
decoder_config
|
| 421 |
-
decoder_config.
|
| 422 |
-
decoder_config.
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
self.
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
if
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
#
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
if past_key_values is
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
"
|
| 601 |
-
"
|
| 602 |
-
"
|
| 603 |
-
"
|
| 604 |
-
"
|
| 605 |
-
"
|
| 606 |
-
"
|
| 607 |
-
"
|
| 608 |
-
"
|
| 609 |
-
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
import copy, os
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.nn import CrossEntropyLoss
|
| 7 |
+
from transformers import AutoConfig, AutoModelForSeq2SeqLM, \
|
| 8 |
+
T5Config, T5Model, T5ForConditionalGeneration
|
| 9 |
+
|
| 10 |
+
from transformers.models.t5.modeling_t5 import T5Stack
|
| 11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions
|
| 12 |
+
from transformers.utils import ModelOutput
|
| 13 |
+
from transformers import DonutSwinModel, DonutImageProcessor, DonutSwinConfig
|
| 14 |
+
from abc import ABC, abstractmethod
|
| 15 |
+
import re
|
| 16 |
+
|
| 17 |
+
from transformers import T5PreTrainedModel
|
| 18 |
+
from transformers.models.t5.modeling_t5 import T5Block, T5LayerNorm
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class BaseModelOutputWithPastAndCrossAttentionsWithAttentionMask(ModelOutput):
|
| 23 |
+
"""
|
| 24 |
+
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 28 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 29 |
+
|
| 30 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
| 31 |
+
hidden_size)` is output.
|
| 32 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 33 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 34 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
| 35 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
| 36 |
+
encoder_sequence_length, embed_size_per_head)`.
|
| 37 |
+
|
| 38 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
| 39 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
| 40 |
+
input) to speed up sequential decoding.
|
| 41 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 42 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 43 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 44 |
+
|
| 45 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 46 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 47 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 48 |
+
sequence_length)`.
|
| 49 |
+
|
| 50 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 51 |
+
heads.
|
| 52 |
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
| 53 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 54 |
+
sequence_length)`.
|
| 55 |
+
|
| 56 |
+
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
| 57 |
+
weighted average in the cross-attention heads.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
last_hidden_state: torch.FloatTensor = None
|
| 61 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 62 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 63 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 64 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 65 |
+
attention_mask: Optional[torch.LongTensor] = None
|
| 66 |
+
|
| 67 |
+
class LlavaT5Config(T5Config):
|
| 68 |
+
model_type = "llava_t5"
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class LlavaT5Stack(T5PreTrainedModel):
|
| 73 |
+
config_class = LlavaT5Config
|
| 74 |
+
|
| 75 |
+
def __init__(self, config, embed_tokens=None):
|
| 76 |
+
super().__init__(config)
|
| 77 |
+
|
| 78 |
+
self.embed_tokens = embed_tokens
|
| 79 |
+
self.is_decoder = config.is_decoder
|
| 80 |
+
|
| 81 |
+
self.block = nn.ModuleList(
|
| 82 |
+
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
| 83 |
+
)
|
| 84 |
+
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
| 85 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
| 86 |
+
|
| 87 |
+
## Vision
|
| 88 |
+
vision_config = DonutSwinConfig(**config.vision_config)
|
| 89 |
+
self.vision_tower = DonutSwinModel(config=vision_config)
|
| 90 |
+
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
| 91 |
+
self.pad_token_id = 0
|
| 92 |
+
self.image_token_index = 32100
|
| 93 |
+
##
|
| 94 |
+
|
| 95 |
+
# Initialize weights and apply final processing
|
| 96 |
+
self.post_init()
|
| 97 |
+
# Model parallel
|
| 98 |
+
self.model_parallel = False
|
| 99 |
+
self.device_map = None
|
| 100 |
+
self.gradient_checkpointing = False
|
| 101 |
+
|
| 102 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask):
|
| 103 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
| 104 |
+
batch_size, sequence_length = input_ids.shape
|
| 105 |
+
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
| 106 |
+
# 1. Create a mask to know where special image tokens are
|
| 107 |
+
special_image_token_mask = input_ids == self.image_token_index
|
| 108 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
| 109 |
+
# Compute the maximum embed dimension
|
| 110 |
+
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
| 111 |
+
batch_indices, non_image_indices = torch.where(input_ids != self.image_token_index)
|
| 112 |
+
|
| 113 |
+
# 2. Compute the positions where text should be written
|
| 114 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
| 115 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
| 116 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
| 117 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
| 118 |
+
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
| 119 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
| 120 |
+
if left_padding:
|
| 121 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
| 122 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
| 123 |
+
|
| 124 |
+
# 3. Create the full embedding, already padded to the maximum position
|
| 125 |
+
final_embedding = torch.zeros(
|
| 126 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 127 |
+
)
|
| 128 |
+
final_attention_mask = torch.zeros(
|
| 129 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
| 133 |
+
# set the corresponding tensors into their correct target device.
|
| 134 |
+
target_device = inputs_embeds.device
|
| 135 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
| 136 |
+
batch_indices.to(target_device),
|
| 137 |
+
non_image_indices.to(target_device),
|
| 138 |
+
text_to_overwrite.to(target_device),
|
| 139 |
+
)
|
| 140 |
+
attention_mask = attention_mask.to(target_device)
|
| 141 |
+
|
| 142 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
| 143 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
| 144 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
| 145 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
| 146 |
+
|
| 147 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
| 148 |
+
image_to_overwrite = torch.full(
|
| 149 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
| 150 |
+
)
|
| 151 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
| 152 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
| 153 |
+
|
| 154 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
| 155 |
+
raise ValueError(
|
| 156 |
+
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
| 157 |
+
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
| 161 |
+
final_attention_mask |= image_to_overwrite
|
| 162 |
+
|
| 163 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
| 164 |
+
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
|
| 165 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
| 166 |
+
|
| 167 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
| 168 |
+
|
| 169 |
+
return final_embedding, final_attention_mask
|
| 170 |
+
|
| 171 |
+
def forward(
|
| 172 |
+
self,
|
| 173 |
+
input_ids=None,
|
| 174 |
+
attention_mask=None,
|
| 175 |
+
pixel_values=None,
|
| 176 |
+
encoder_hidden_states=None,
|
| 177 |
+
encoder_attention_mask=None,
|
| 178 |
+
inputs_embeds=None,
|
| 179 |
+
head_mask=None,
|
| 180 |
+
cross_attn_head_mask=None,
|
| 181 |
+
past_key_values=None,
|
| 182 |
+
use_cache=None,
|
| 183 |
+
output_attentions=None,
|
| 184 |
+
output_hidden_states=None,
|
| 185 |
+
return_dict=None,
|
| 186 |
+
):
|
| 187 |
+
# Model parallel
|
| 188 |
+
if self.model_parallel:
|
| 189 |
+
torch.cuda.set_device(self.first_device)
|
| 190 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
| 191 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 192 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 193 |
+
output_hidden_states = (
|
| 194 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 195 |
+
)
|
| 196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 197 |
+
|
| 198 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 199 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
| 200 |
+
raise ValueError(
|
| 201 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
| 202 |
+
)
|
| 203 |
+
elif input_ids is not None:
|
| 204 |
+
input_shape = input_ids.size()
|
| 205 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 206 |
+
elif inputs_embeds is not None:
|
| 207 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 208 |
+
else:
|
| 209 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
| 210 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
| 211 |
+
|
| 212 |
+
if inputs_embeds is None:
|
| 213 |
+
if self.embed_tokens is None:
|
| 214 |
+
raise ValueError("You have to initialize the model with valid token embeddings")
|
| 215 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 216 |
+
|
| 217 |
+
### Multimodal
|
| 218 |
+
vision_feature_layer = -1
|
| 219 |
+
vision_feature_select_strategy = "default"
|
| 220 |
+
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
| 221 |
+
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
|
| 222 |
+
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
| 223 |
+
|
| 224 |
+
if vision_feature_select_strategy == "default":
|
| 225 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
| 226 |
+
elif vision_feature_select_strategy == "full":
|
| 227 |
+
selected_image_feature = selected_image_feature
|
| 228 |
+
else:
|
| 229 |
+
raise ValueError(
|
| 230 |
+
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
image_features = self.mm_projector(selected_image_feature)
|
| 234 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
| 235 |
+
inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(
|
| 236 |
+
image_features, inputs_embeds, input_ids, attention_mask
|
| 237 |
+
)
|
| 238 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 239 |
+
#################
|
| 240 |
+
|
| 241 |
+
batch_size, seq_length = input_shape
|
| 242 |
+
|
| 243 |
+
# required mask seq length can be calculated via length of past
|
| 244 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
| 245 |
+
|
| 246 |
+
if use_cache is True:
|
| 247 |
+
if not self.is_decoder:
|
| 248 |
+
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
| 249 |
+
|
| 250 |
+
# initialize past_key_values with `None` if past does not exist
|
| 251 |
+
if past_key_values is None:
|
| 252 |
+
past_key_values = [None] * len(self.block)
|
| 253 |
+
|
| 254 |
+
if attention_mask is None:
|
| 255 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
| 256 |
+
|
| 257 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 258 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 259 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 260 |
+
|
| 261 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 262 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 263 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 264 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 265 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 266 |
+
if encoder_attention_mask is None:
|
| 267 |
+
encoder_attention_mask = torch.ones(
|
| 268 |
+
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
|
| 269 |
+
)
|
| 270 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 271 |
+
else:
|
| 272 |
+
encoder_extended_attention_mask = None
|
| 273 |
+
|
| 274 |
+
if self.gradient_checkpointing and self.training:
|
| 275 |
+
if use_cache:
|
| 276 |
+
# logger.warning_once(
|
| 277 |
+
# "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 278 |
+
# )
|
| 279 |
+
use_cache = False
|
| 280 |
+
|
| 281 |
+
# Prepare head mask if needed
|
| 282 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
| 283 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
| 284 |
+
present_key_value_states = () if use_cache else None
|
| 285 |
+
all_hidden_states = () if output_hidden_states else None
|
| 286 |
+
all_attentions = () if output_attentions else None
|
| 287 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
| 288 |
+
position_bias = None
|
| 289 |
+
encoder_decoder_position_bias = None
|
| 290 |
+
|
| 291 |
+
hidden_states = self.dropout(inputs_embeds)
|
| 292 |
+
|
| 293 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
| 294 |
+
layer_head_mask = head_mask[i]
|
| 295 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
| 296 |
+
# Model parallel
|
| 297 |
+
if self.model_parallel:
|
| 298 |
+
torch.cuda.set_device(hidden_states.device)
|
| 299 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 300 |
+
if attention_mask is not None:
|
| 301 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 302 |
+
if position_bias is not None:
|
| 303 |
+
position_bias = position_bias.to(hidden_states.device)
|
| 304 |
+
if encoder_hidden_states is not None:
|
| 305 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
| 306 |
+
if encoder_extended_attention_mask is not None:
|
| 307 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
| 308 |
+
if encoder_decoder_position_bias is not None:
|
| 309 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
| 310 |
+
if layer_head_mask is not None:
|
| 311 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
| 312 |
+
if cross_attn_layer_head_mask is not None:
|
| 313 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
| 314 |
+
if output_hidden_states:
|
| 315 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 316 |
+
|
| 317 |
+
if self.gradient_checkpointing and self.training:
|
| 318 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 319 |
+
layer_module.forward,
|
| 320 |
+
hidden_states,
|
| 321 |
+
extended_attention_mask,
|
| 322 |
+
position_bias,
|
| 323 |
+
encoder_hidden_states,
|
| 324 |
+
encoder_extended_attention_mask,
|
| 325 |
+
encoder_decoder_position_bias,
|
| 326 |
+
layer_head_mask,
|
| 327 |
+
cross_attn_layer_head_mask,
|
| 328 |
+
None, # past_key_value is always None with gradient checkpointing
|
| 329 |
+
use_cache,
|
| 330 |
+
output_attentions,
|
| 331 |
+
)
|
| 332 |
+
else:
|
| 333 |
+
layer_outputs = layer_module(
|
| 334 |
+
hidden_states,
|
| 335 |
+
attention_mask=extended_attention_mask,
|
| 336 |
+
position_bias=position_bias,
|
| 337 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 338 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 339 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
| 340 |
+
layer_head_mask=layer_head_mask,
|
| 341 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
| 342 |
+
past_key_value=past_key_value,
|
| 343 |
+
use_cache=use_cache,
|
| 344 |
+
output_attentions=output_attentions,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# layer_outputs is a tuple with:
|
| 348 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
| 349 |
+
if use_cache is False:
|
| 350 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
| 351 |
+
|
| 352 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
| 353 |
+
|
| 354 |
+
# We share the position biases between the layers - the first layer store them
|
| 355 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
| 356 |
+
# (cross-attention position bias), (cross-attention weights)
|
| 357 |
+
position_bias = layer_outputs[2]
|
| 358 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 359 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
| 360 |
+
# append next layer key value states
|
| 361 |
+
if use_cache:
|
| 362 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
| 363 |
+
|
| 364 |
+
if output_attentions:
|
| 365 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
| 366 |
+
if self.is_decoder:
|
| 367 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
| 368 |
+
|
| 369 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 370 |
+
if self.model_parallel:
|
| 371 |
+
for k, v in self.device_map.items():
|
| 372 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 373 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 374 |
+
|
| 375 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 376 |
+
hidden_states = self.dropout(hidden_states)
|
| 377 |
+
|
| 378 |
+
# Add last layer
|
| 379 |
+
if output_hidden_states:
|
| 380 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 381 |
+
|
| 382 |
+
if not return_dict:
|
| 383 |
+
return tuple(
|
| 384 |
+
v
|
| 385 |
+
for v in [
|
| 386 |
+
hidden_states,
|
| 387 |
+
present_key_value_states,
|
| 388 |
+
all_hidden_states,
|
| 389 |
+
all_attentions,
|
| 390 |
+
all_cross_attentions,
|
| 391 |
+
]
|
| 392 |
+
if v is not None
|
| 393 |
+
)
|
| 394 |
+
return BaseModelOutputWithPastAndCrossAttentionsWithAttentionMask(
|
| 395 |
+
last_hidden_state=hidden_states,
|
| 396 |
+
past_key_values=present_key_value_states,
|
| 397 |
+
hidden_states=all_hidden_states,
|
| 398 |
+
attentions=all_attentions,
|
| 399 |
+
cross_attentions=all_cross_attentions,
|
| 400 |
+
attention_mask=attention_mask,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
class LlavaT5ForConditionalGeneration(T5ForConditionalGeneration):
|
| 405 |
+
config_class = LlavaT5Config
|
| 406 |
+
|
| 407 |
+
def __init__(self, config):
|
| 408 |
+
super(T5ForConditionalGeneration, self).__init__(config)
|
| 409 |
+
|
| 410 |
+
self.model_dim = config.d_model
|
| 411 |
+
|
| 412 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
| 413 |
+
|
| 414 |
+
encoder_config = copy.deepcopy(config)
|
| 415 |
+
encoder_config.is_decoder = False
|
| 416 |
+
encoder_config.use_cache = False
|
| 417 |
+
encoder_config.is_encoder_decoder = False
|
| 418 |
+
self.encoder = LlavaT5Stack(encoder_config, self.shared)
|
| 419 |
+
|
| 420 |
+
decoder_config = copy.deepcopy(config)
|
| 421 |
+
decoder_config.is_decoder = True
|
| 422 |
+
decoder_config.is_encoder_decoder = False
|
| 423 |
+
decoder_config.num_layers = config.num_decoder_layers
|
| 424 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
| 425 |
+
|
| 426 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
| 427 |
+
|
| 428 |
+
# Initialize weights and apply final processing
|
| 429 |
+
self.post_init()
|
| 430 |
+
|
| 431 |
+
# Model parallel
|
| 432 |
+
self.model_parallel = False
|
| 433 |
+
self.device_map = None
|
| 434 |
+
|
| 435 |
+
def get_model(self):
|
| 436 |
+
return self.encoder
|
| 437 |
+
def get_encoder(self):
|
| 438 |
+
return self.encoder
|
| 439 |
+
def get_decoder(self):
|
| 440 |
+
return self.decoder
|
| 441 |
+
|
| 442 |
+
def forward(
|
| 443 |
+
self,
|
| 444 |
+
input_ids: torch.LongTensor = None,
|
| 445 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 446 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 447 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 448 |
+
labels: Optional[torch.LongTensor] = None,
|
| 449 |
+
use_cache: Optional[bool] = None,
|
| 450 |
+
output_attentions: Optional[bool] = None,
|
| 451 |
+
output_hidden_states: Optional[bool] = None,
|
| 452 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 453 |
+
return_dict: Optional[bool] = None,
|
| 454 |
+
|
| 455 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
| 456 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
| 457 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 458 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
| 459 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 460 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 461 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 462 |
+
|
| 463 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
| 464 |
+
|
| 465 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 466 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
| 470 |
+
if head_mask is not None and decoder_head_mask is None:
|
| 471 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
| 472 |
+
#warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
| 473 |
+
decoder_head_mask = head_mask
|
| 474 |
+
|
| 475 |
+
if encoder_outputs is not None:
|
| 476 |
+
attention_mask = encoder_outputs.attention_mask
|
| 477 |
+
|
| 478 |
+
# Encode if needed (training, first prediction pass)
|
| 479 |
+
if encoder_outputs is None:
|
| 480 |
+
# Convert encoder inputs in embeddings if needed
|
| 481 |
+
encoder_outputs = self.encoder(
|
| 482 |
+
input_ids=input_ids,
|
| 483 |
+
attention_mask=attention_mask,
|
| 484 |
+
pixel_values=pixel_values,
|
| 485 |
+
inputs_embeds=inputs_embeds,
|
| 486 |
+
head_mask=head_mask,
|
| 487 |
+
output_attentions=output_attentions,
|
| 488 |
+
output_hidden_states=output_hidden_states,
|
| 489 |
+
return_dict=return_dict,
|
| 490 |
+
)
|
| 491 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
| 492 |
+
encoder_outputs = BaseModelOutput(
|
| 493 |
+
last_hidden_state=encoder_outputs[0],
|
| 494 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
| 495 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
hidden_states = encoder_outputs[0]
|
| 500 |
+
|
| 501 |
+
if self.model_parallel:
|
| 502 |
+
torch.cuda.set_device(self.decoder.first_device)
|
| 503 |
+
|
| 504 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
| 505 |
+
# get decoder inputs from shifting lm labels to the right
|
| 506 |
+
decoder_input_ids = self._shift_right(labels)
|
| 507 |
+
|
| 508 |
+
# Set device for model parallelism
|
| 509 |
+
if self.model_parallel:
|
| 510 |
+
torch.cuda.set_device(self.decoder.first_device)
|
| 511 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
| 512 |
+
if decoder_input_ids is not None:
|
| 513 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
| 514 |
+
if attention_mask is not None:
|
| 515 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
| 516 |
+
if decoder_attention_mask is not None:
|
| 517 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
decoder_outputs = self.decoder(
|
| 521 |
+
input_ids=decoder_input_ids,
|
| 522 |
+
attention_mask=decoder_attention_mask,
|
| 523 |
+
inputs_embeds=decoder_inputs_embeds,
|
| 524 |
+
past_key_values=past_key_values,
|
| 525 |
+
encoder_hidden_states=hidden_states,
|
| 526 |
+
encoder_attention_mask=attention_mask,
|
| 527 |
+
head_mask=decoder_head_mask,
|
| 528 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
| 529 |
+
use_cache=use_cache,
|
| 530 |
+
output_attentions=output_attentions,
|
| 531 |
+
output_hidden_states=output_hidden_states,
|
| 532 |
+
return_dict=return_dict,
|
| 533 |
+
)
|
| 534 |
+
sequence_output = decoder_outputs[0]
|
| 535 |
+
|
| 536 |
+
# Set device for model parallelism
|
| 537 |
+
if self.model_parallel:
|
| 538 |
+
torch.cuda.set_device(self.encoder.first_device)
|
| 539 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
| 540 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
| 541 |
+
|
| 542 |
+
if self.config.tie_word_embeddings:
|
| 543 |
+
# Rescale output before projecting on vocab
|
| 544 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
| 545 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
| 546 |
+
|
| 547 |
+
lm_logits = self.lm_head(sequence_output)
|
| 548 |
+
|
| 549 |
+
loss = None
|
| 550 |
+
if labels is not None:
|
| 551 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
| 552 |
+
# move labels to correct device to enable PP
|
| 553 |
+
labels = labels.to(lm_logits.device)
|
| 554 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
| 555 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
| 556 |
+
|
| 557 |
+
if not return_dict:
|
| 558 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
| 559 |
+
return ((loss,) + output) if loss is not None else output
|
| 560 |
+
|
| 561 |
+
return Seq2SeqLMOutput(
|
| 562 |
+
loss=loss,
|
| 563 |
+
logits=lm_logits,
|
| 564 |
+
past_key_values=decoder_outputs.past_key_values,
|
| 565 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
| 566 |
+
decoder_attentions=decoder_outputs.attentions,
|
| 567 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
| 568 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
| 569 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
| 570 |
+
encoder_attentions=encoder_outputs.attentions,
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
def prepare_inputs_for_generation(
|
| 574 |
+
self,
|
| 575 |
+
input_ids,
|
| 576 |
+
past_key_values=None,
|
| 577 |
+
attention_mask=None,
|
| 578 |
+
head_mask=None,
|
| 579 |
+
decoder_head_mask=None,
|
| 580 |
+
decoder_attention_mask=None,
|
| 581 |
+
cross_attn_head_mask=None,
|
| 582 |
+
use_cache=None,
|
| 583 |
+
encoder_outputs=None,
|
| 584 |
+
**kwargs,
|
| 585 |
+
):
|
| 586 |
+
# cut decoder_input_ids if past_key_values is used
|
| 587 |
+
if past_key_values is not None:
|
| 588 |
+
past_length = past_key_values[0][0].shape[2]
|
| 589 |
+
|
| 590 |
+
# Some generation methods already pass only the last input ID
|
| 591 |
+
if input_ids.shape[1] > past_length:
|
| 592 |
+
remove_prefix_length = past_length
|
| 593 |
+
else:
|
| 594 |
+
# Default to old behavior: keep only final ID
|
| 595 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 596 |
+
|
| 597 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 598 |
+
|
| 599 |
+
return {
|
| 600 |
+
"decoder_input_ids": input_ids,
|
| 601 |
+
"past_key_values": past_key_values,
|
| 602 |
+
"encoder_outputs": encoder_outputs,
|
| 603 |
+
"attention_mask": attention_mask,
|
| 604 |
+
"head_mask": head_mask,
|
| 605 |
+
"decoder_head_mask": decoder_head_mask,
|
| 606 |
+
"decoder_attention_mask": decoder_attention_mask,
|
| 607 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
| 608 |
+
"use_cache": use_cache,
|
| 609 |
+
"pixel_values": kwargs.get("pixel_values", None),
|
| 610 |
+
}
|