ahmedelgebaly commited on
Commit
62603f2
·
verified ·
1 Parent(s): f2e1391

End of training

Browse files
Files changed (2) hide show
  1. README.md +154 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: meta-llama/Meta-Llama-3-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: llama-3.1-8b-squadv2_SciQ_e1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: meta-llama/Meta-Llama-3-8B # same model you originally used
22
+ # Load your previously fine-tuned model as a PEFT adapter
23
+ peft_model: ahmedelgebaly/llama-3.1-8b-squadv2
24
+ model_type: AutoModelForCausalLM
25
+ tokenizer_type: AutoTokenizer
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: true
29
+ strict: false
30
+
31
+ datasets:
32
+ - path: ahmedelgebaly/SciQ_Alpaca
33
+ type: alpaca
34
+ split: train
35
+
36
+ test_datasets:
37
+ - path: ahmedelgebaly/SciQ_Alpaca
38
+ type: alpaca
39
+ split: validation
40
+
41
+ dataset_prepared_path:
42
+ output_dir: ./outputs/qlora-out
43
+
44
+ adapter: qlora
45
+ lora_model_dir:
46
+
47
+ sequence_len: 4096
48
+ sample_packing: true
49
+ pad_to_sequence_len: true
50
+
51
+ lora_r: 32
52
+ lora_alpha: 16
53
+ lora_dropout: 0.05
54
+ lora_target_modules:
55
+ lora_target_linear: true
56
+ lora_fan_in_fan_out:
57
+
58
+ wandb_project: llama-3.1-8b-squadv2_SciQ_e1
59
+ wandb_entity:
60
+ wandb_watch:
61
+ wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e1
62
+ wandb_log_model:
63
+
64
+ hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1
65
+
66
+ gradient_accumulation_steps: 4
67
+ micro_batch_size: 4
68
+ num_epochs: 1
69
+ optimizer: paged_adamw_32bit
70
+ lr_scheduler: cosine
71
+ learning_rate: 0.0002
72
+
73
+ train_on_inputs: false
74
+ group_by_length: false
75
+ bf16: auto
76
+ fp16:
77
+ tf32: false
78
+
79
+ gradient_checkpointing: true
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ logging_steps: 1
84
+ xformers_attention:
85
+ flash_attention: true
86
+
87
+ warmup_steps: 10
88
+ evals_per_epoch: 4
89
+ eval_table_size:
90
+ saves_per_epoch: 1
91
+ debug:
92
+ deepspeed:
93
+ weight_decay: 0.0
94
+ fsdp:
95
+ fsdp_config:
96
+ special_tokens:
97
+ pad_token: "<|end_of_text|>"
98
+
99
+ ```
100
+
101
+ </details><br>
102
+
103
+ # llama-3.1-8b-squadv2_SciQ_e1
104
+
105
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
106
+ It achieves the following results on the evaluation set:
107
+ - Loss: 0.9369
108
+
109
+ ## Model description
110
+
111
+ More information needed
112
+
113
+ ## Intended uses & limitations
114
+
115
+ More information needed
116
+
117
+ ## Training and evaluation data
118
+
119
+ More information needed
120
+
121
+ ## Training procedure
122
+
123
+ ### Training hyperparameters
124
+
125
+ The following hyperparameters were used during training:
126
+ - learning_rate: 0.0002
127
+ - train_batch_size: 4
128
+ - eval_batch_size: 4
129
+ - seed: 42
130
+ - gradient_accumulation_steps: 4
131
+ - total_train_batch_size: 16
132
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
133
+ - lr_scheduler_type: cosine
134
+ - lr_scheduler_warmup_steps: 10
135
+ - num_epochs: 1
136
+
137
+ ### Training results
138
+
139
+ | Training Loss | Epoch | Step | Validation Loss |
140
+ |:-------------:|:------:|:----:|:---------------:|
141
+ | 1.7866 | 0.0305 | 1 | 1.8420 |
142
+ | 1.1313 | 0.2443 | 8 | 1.0968 |
143
+ | 0.841 | 0.4885 | 16 | 0.9655 |
144
+ | 0.8722 | 0.7328 | 24 | 0.9415 |
145
+ | 0.8736 | 0.9771 | 32 | 0.9369 |
146
+
147
+
148
+ ### Framework versions
149
+
150
+ - PEFT 0.13.2
151
+ - Transformers 4.45.2
152
+ - Pytorch 2.3.1+cu121
153
+ - Datasets 3.0.1
154
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e78378ff61e9e176a0b771ed857741eb644460931da845fe1c864a81801b4ec7
3
+ size 335706186