--- license: mit language: - ru - en --- # CharLLama-2.6B Pretrained Language Model This repository contains a pre-trained language model based on the [Llama](https://arxiv.org/abs/2302.13971) architecture, utilizing character-level tokenization. The model was developed for experiments in generating Russian-language accentual-syllabic poetry, as described in our paper: *"Generation of Russian Poetry of Different Genres and Styles Using Neural Networks with Character-Level Tokenization"*. Note that for practical applications, fine-tuning on a specific dataset is recommended. ## Model Specifications - **Number of parameters**: `2,641,199,664` ## Pretraining Data The model was pretrained on a mixed dataset of approximately 100GB of Russian and English texts, with a focus on Russian-language content. The dataset includes diverse domains such as fiction and poetry across various genres and styles. All texts were accentuated. ## Character-Level Tokenization The model employs character-by-character tokenization. To use the tokenizer, install it via: ``` pip install git+https://github.com/Koziev/character-tokenizer ``` The tokenizer includes special tokens `` and ``. ## Usage To use the model with the `transformers` library, follow this example: ``` import torch import transformers import charactertokenizer generation_args = {'max_length': 1024, 'num_return_sequences': 1, 'do_sample': True, 'no_repeat_ngram_size': 10, 'temperature': 0.8, 'top_p': 0.6, 'top_k': 0, } device = "cuda:0" model_dir = 'ai-forever/charllama-2.6B' tokenizer = charactertokenizer.CharacterTokenizer.from_pretrained(model_dir) model = transformers.AutoModelForCausalLM.from_pretrained(model_dir) model.to(device) # Poetry completion prompt = chr(8) + 'У бу́рных чу́вств неи́стовый коне́ц' input_ids = tokenizer(prompt, return_tensors='pt').input_ids out_ids = model.generate(input_ids=input_ids.to(device), eos_token_id=tokenizer.eos_token_id, **generation_args).tolist() prompt_len = len(input_ids[0]) for seq in out_ids: seq = seq[1:] output = tokenizer.decode(seq) if '' in output: output = output[:output.find('')].strip() text = output print('-'*80) print(text) ``` Example output (may vary): ``` У бу́рных чу́вств неи́стовый коне́ц, И в э́том не́т ни ка́пельки сомне́нья. Прихо́дит сро́к, и го́рестный вене́ц Наде́нет на себя́ душа́ смире́нно. И не помо́гут в э́том Небеса́, И не поми́лует Судьба́ - подру́га. И бу́дет на душе́ твое́й тоска́, И ста́нет в жи́зни нестерпи́мо ту́го. ``` ## Limitation The model may generate inappropriate content, including hate speech, offensive language, or biased outputs reflecting the training data. Use with caution and consider post-processing or filtering mechanisms. ## Citation If you use this model in your research, please cite it as follows (citation details will be available soon): *citation information will be available soon*