ai-forever
commited on
Commit
•
c788f82
1
Parent(s):
7b16acf
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,207 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
tags:
|
5 |
+
- spellchecking
|
6 |
+
- pytorch
|
7 |
+
- natural language generation
|
8 |
license: mit
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
library_name: transformers
|
14 |
+
model-index:
|
15 |
+
- name: sage-fredt5-large
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: text-generation
|
19 |
+
dataset:
|
20 |
+
type: spellcheck_benchmark
|
21 |
+
name: RUSpellRU (spell&punct)
|
22 |
+
metrics:
|
23 |
+
- name: F1 (spell)
|
24 |
+
type: f1_spell
|
25 |
+
value: 62.2
|
26 |
+
verified: false
|
27 |
+
- name: F1 (punct)
|
28 |
+
type: f1_punct
|
29 |
+
value: 60.2
|
30 |
+
verified: false
|
31 |
+
- name: F1 (case)
|
32 |
+
type: f1_case
|
33 |
+
value: 78.1
|
34 |
+
verified: false
|
35 |
+
- task:
|
36 |
+
type: text-generation
|
37 |
+
dataset:
|
38 |
+
type: spellcheck_benchmark
|
39 |
+
name: MultidomainGold (spell&punct)
|
40 |
+
metrics:
|
41 |
+
- name: F1 (spell)
|
42 |
+
type: f1_spell
|
43 |
+
value: 46.3
|
44 |
+
verified: false
|
45 |
+
- name: F1 (punct)
|
46 |
+
type: f1_punct
|
47 |
+
value: 21.6
|
48 |
+
verified: false
|
49 |
+
- name: F1 (case)
|
50 |
+
type: f1_case
|
51 |
+
value: 34.0
|
52 |
+
verified: false
|
53 |
+
- task:
|
54 |
+
type: text-generation
|
55 |
+
dataset:
|
56 |
+
type: spellcheck_benchmark
|
57 |
+
name: MedSpellchecker (spell&punct)
|
58 |
+
metrics:
|
59 |
+
- name: F1 (spell)
|
60 |
+
type: f1_spell
|
61 |
+
value: 42.7
|
62 |
+
verified: false
|
63 |
+
- name: F1 (punct)
|
64 |
+
type: f1_punct
|
65 |
+
value: 15.7
|
66 |
+
verified: false
|
67 |
+
- name: F1 (case)
|
68 |
+
type: f1_case
|
69 |
+
value: 41.9
|
70 |
+
verified: false
|
71 |
+
- task:
|
72 |
+
type: text-generation
|
73 |
+
dataset:
|
74 |
+
type: spellcheck_benchmark
|
75 |
+
name: GitHubTypoCorpusRu (spell&punct)
|
76 |
+
metrics:
|
77 |
+
- name: F1 (spell)
|
78 |
+
type: f1_spell
|
79 |
+
value: 46.3
|
80 |
+
verified: false
|
81 |
+
- name: F1 (punct)
|
82 |
+
type: f1_punct
|
83 |
+
value: 20.2
|
84 |
+
verified: false
|
85 |
+
- name: F1 (case)
|
86 |
+
type: f1_case
|
87 |
+
value: 12.6
|
88 |
+
verified: false
|
89 |
---
|
90 |
+
# sage-fredt5-large
|
91 |
+
|
92 |
+
![banner](images/sage_banner.jpg)
|
93 |
+
|
94 |
+
## Summary
|
95 |
+
|
96 |
+
The model corrects spelling and punctuation errors and typos by bringing all the words in the text to the norm of the Russian language.
|
97 |
+
Corrector had been trained based on the model [FRED-T5-large](https://huggingface.co/ai-forever/FRED-T5-large).
|
98 |
+
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage).
|
99 |
+
|
100 |
+
## Public references
|
101 |
+
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
|
102 |
+
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
|
103 |
+
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/)
|
104 |
+
|
105 |
+
|
106 |
+
## Examples
|
107 |
+
| Input | Output |
|
108 |
+
| --- | --- |
|
109 |
+
| И не чсно прохожим в этот день непогожйи почему я веселый такйо | И не ясно прохожим в этот день непогожий, почему я веселый такой. |
|
110 |
+
| Каждй день воттак делой, и спена балеть нибудет. А вотак каждый день ниделай | Каждый день вот так делай и спина болеть не будет. А вот так каждый день не делай. |
|
111 |
+
| Основая цель мероприятия практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий сокращение временных показателей реагирования. | Основная цель мероприятия — практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования |
|
112 |
+
| | |
|
113 |
+
|
114 |
+
## Metrics
|
115 |
+
### Quality
|
116 |
+
Below are automatic metrics for determining the correctness of the spell checkers.
|
117 |
+
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets:
|
118 |
+
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors;
|
119 |
+
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
|
120 |
+
- **MedSpellChecker**: texts with errors from medical anamnesis;
|
121 |
+
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com);
|
122 |
+
|
123 |
+
**RUSpellRU**
|
124 |
+
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
|
125 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
126 |
+
| sage-fredt5-large | 57.3 | 68.0 | 62.2 | 86.7 | 46.1 | 60.2 | 92.1 | 67.8 | 78.1 |
|
127 |
+
| sage-fredt5-large (ft) | 88.4 | 80.9 | 84.5 | 88.2 | 85.3 | 86.8 | 95.5 | 94.0 | 94.7 |
|
128 |
+
| sage-ai-service | 90.3 | 86.3 | 88.2 | 90.3 | 86.6 | 88.4 | 95.2 | 95.9 | 95.6 |
|
129 |
+
| gpt-3.5-turbo | 33.6 | 58.5 | 42.7 | 85.9 | 64.6 | 73.7 | 84.9 | 73.9 | 79.0 |
|
130 |
+
| gpt-4 | 54.9 | 76.7 | 64.0 | 84.0 | 82.3 | 83.2 | 91.5 | 90.2 | 90.9 |
|
131 |
+
|
132 |
+
|
133 |
+
**MultidomainGold**
|
134 |
+
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
|
135 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
136 |
+
| sage-fredt5-large | 43.4 | 49.7 | 46.3 | 21.8 | 21.3 | 21.6 | 58.8 | 23.9 | 34.0 |
|
137 |
+
| sage-fredt5-large (ft) | 80.3 | 75.1 | 77.6 | 69.0 | 66.5 | 67.7 | 78.6 | 80.0 | 79.3 |
|
138 |
+
| sage-ai-service | 81.6 | 77.7 | 79.6 | 70.2 | 67.5 | 68.8 | 80.5 | 80.5 | 80.5 |
|
139 |
+
| gpt-3.5-turbo | 18.8 | 48.1 | 27.1 | 42.0 | 31.8 | 36.2 | 47.1 | 51.3 | 49.1 |
|
140 |
+
| gpt-4 | 25.4 | 68.0 | 37.0 | 57.8 | 54.3 | 56.0 | 54.0 | 67.5 | 60.0 |
|
141 |
+
|
142 |
+
|
143 |
+
**MedSpellChecker**
|
144 |
+
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
|
145 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
146 |
+
| sage-fredt5-large | 35.2 | 54.5 | 42.8 | 19.2 | 13.2 | 15.7 | 48.7 | 36.8 | 41.9 |
|
147 |
+
| sage-fredt5-large (ft) | 72.5 | 72.2 | 72.3 | 74.6 | 66.4 | 70.3 | 79.3 | 85.1 | 82.1 |
|
148 |
+
| sage-ai-service | 71.3 | 73.5 | 72.4 | 75.1 | 69.2 | 72.0 | 80.9 | 72.8 | 76.6|
|
149 |
+
| gpt-3.5-turbo | 14.7 | 45.9 | 22.3 | 69.9 | 52.3 | 59.8 | 26.4 | 41.8 | 32.3 |
|
150 |
+
| gpt-4 | 37.8 | 72.3 | 49.6 | 81.4 | 64.3 | 71.9 | 73.0 | 62.1 | 67.1 |
|
151 |
+
|
152 |
+
|
153 |
+
**GitHubTypoCorpusRu**
|
154 |
+
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
|
155 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
156 |
+
| sage-fredt5-large | 46.0 | 46.6 | 46.3 | 22.7 | 18.3 | 20.2 | 12.0 | 13.2 | 12.6 |
|
157 |
+
| sage-fredt5-large (ft) | 67.5 | 53.2 | 59.5 | 48.5 | 38.0 | 42.6 | 37.3 | 50.0 | 42.7 |
|
158 |
+
| sage-ai-service | 70.8 | 56.3 | 62.7 | 48.9 | 35.8 | 41.4 | 32.9 | 45.3 | 38.1|
|
159 |
+
| gpt-3.5-turbo | 23.7 | 38.7 | 29.4 | 37.6 | 23.3 | 28.7 | 19.6 | 35.9 | 25.3 |
|
160 |
+
| gpt-4 | 27.0 | 52.8 | 35.7 | 45.9 | 32.6 | 38.2 | 25.7 | 36.8 | 30.2 |
|
161 |
+
|
162 |
+
## How to use
|
163 |
+
```python
|
164 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
165 |
+
tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-fredt5-large")
|
166 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-fredt5-large")
|
167 |
+
model.to("cuda:0")
|
168 |
+
sentence = "И не чсно прохожим в этот день непогожйи почему я веселый такйо"
|
169 |
+
text = "<LM>" + sentence
|
170 |
+
with torch.inference_mode():
|
171 |
+
encodings = tokenizer(text, max_length=None, padding="longest", truncation=False, return_tensors="pt")
|
172 |
+
for k, v in encodings.items():
|
173 |
+
encodings[k] = v.to("cuda:0")
|
174 |
+
res = model.generate(
|
175 |
+
**encodings,
|
176 |
+
use_cache=True,
|
177 |
+
max_length = encodings["input_ids"].size(1) * 1.5
|
178 |
+
)
|
179 |
+
res = res.cpu().tolist()
|
180 |
+
res = tokenizer.batch_decode(res, skip_special_tokens=True)
|
181 |
+
print(res)
|
182 |
+
# ["И не ясно прохожим в этот день непогожий, почему я веселый такой."]
|
183 |
+
```
|
184 |
+
|
185 |
+
## Limitations
|
186 |
+
- The model is intended to be fine-tuned on sets with natural errors for better performance. The realized model is a pre-train and pre-train task is different from the usual spell checking in terms of density of the noise in a corpus and its origin;
|
187 |
+
- Complex formatting may cause some trouble in output generation.
|
188 |
+
|
189 |
+
## Resources
|
190 |
+
- [SAGE library](https://github.com/ai-forever/sage), GitHub
|
191 |
+
- [sage-fredt5-large](https://huggingface.co/ai-forever/sage-fredt5-large), HuggingFace
|
192 |
+
- [sage-fredt5-distilled-95m](https://huggingface.co/ai-forever/sage-fredt5-distilled-95m), HuggingFace
|
193 |
+
- [sage-m2m100-1.2B](https://huggingface.co/ai-forever/sage-m2m100-1.2B), HuggingFace
|
194 |
+
- [sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large), HuggingFace
|
195 |
+
|
196 |
+
## License
|
197 |
+
Model [FRED-T5-large](https://huggingface.co/ai-forever/FRED-T5-large), on the basis of which our solution is made, and its source code are supplied under the MIT license.
|
198 |
+
Our solution comes with MIT license also.
|
199 |
+
|
200 |
+
## Specifications
|
201 |
+
- File size: 3.3 Gb;
|
202 |
+
- Framework: pytorch
|
203 |
+
- Version: v1.0
|
204 |
+
- Developer: SberDevices, AGI NLP
|
205 |
+
|
206 |
+
## Contacts
|
207 |