Flash Attention.
Browse files- config.json +5 -4
- configuration_indictrans.py +3 -1
- modeling_indictrans.py +420 -77
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
"activation_dropout": 0.0,
|
4 |
"activation_function": "gelu",
|
5 |
"architectures": [
|
@@ -19,7 +19,7 @@
|
|
19 |
"decoder_layers": 18,
|
20 |
"decoder_normalize_before": true,
|
21 |
"decoder_start_token_id": 2,
|
22 |
-
"decoder_vocab_size":
|
23 |
"dropout": 0.2,
|
24 |
"encoder_attention_heads": 8,
|
25 |
"encoder_embed_dim": 512,
|
@@ -27,7 +27,7 @@
|
|
27 |
"encoder_layerdrop": 0,
|
28 |
"encoder_layers": 18,
|
29 |
"encoder_normalize_before": true,
|
30 |
-
"encoder_vocab_size":
|
31 |
"eos_token_id": 2,
|
32 |
"init_std": 0.02,
|
33 |
"is_encoder_decoder": true,
|
@@ -41,5 +41,6 @@
|
|
41 |
"share_decoder_input_output_embed": true,
|
42 |
"torch_dtype": "float32",
|
43 |
"transformers_version": "4.32.1",
|
44 |
-
"use_cache": true
|
|
|
45 |
}
|
|
|
1 |
{
|
2 |
+
"name_or_path": "ai4bharat/indictrans2-en-indic-dist-200M",
|
3 |
"activation_dropout": 0.0,
|
4 |
"activation_function": "gelu",
|
5 |
"architectures": [
|
|
|
19 |
"decoder_layers": 18,
|
20 |
"decoder_normalize_before": true,
|
21 |
"decoder_start_token_id": 2,
|
22 |
+
"decoder_vocab_size": 122672,
|
23 |
"dropout": 0.2,
|
24 |
"encoder_attention_heads": 8,
|
25 |
"encoder_embed_dim": 512,
|
|
|
27 |
"encoder_layerdrop": 0,
|
28 |
"encoder_layers": 18,
|
29 |
"encoder_normalize_before": true,
|
30 |
+
"encoder_vocab_size": 32322,
|
31 |
"eos_token_id": 2,
|
32 |
"init_std": 0.02,
|
33 |
"is_encoder_decoder": true,
|
|
|
41 |
"share_decoder_input_output_embed": true,
|
42 |
"torch_dtype": "float32",
|
43 |
"transformers_version": "4.32.1",
|
44 |
+
"use_cache": true,
|
45 |
+
"attn_implementation": "eager"
|
46 |
}
|
configuration_indictrans.py
CHANGED
@@ -118,6 +118,7 @@ class IndicTransConfig(PretrainedConfig):
|
|
118 |
pad_token_id=1,
|
119 |
bos_token_id=0,
|
120 |
eos_token_id=2,
|
|
|
121 |
**kwargs,
|
122 |
):
|
123 |
self.encoder_vocab_size = encoder_vocab_size
|
@@ -146,7 +147,8 @@ class IndicTransConfig(PretrainedConfig):
|
|
146 |
self.num_hidden_layers = encoder_layers
|
147 |
self.scale_embedding = scale_embedding
|
148 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
149 |
-
|
|
|
150 |
super().__init__(
|
151 |
pad_token_id=pad_token_id,
|
152 |
bos_token_id=bos_token_id,
|
|
|
118 |
pad_token_id=1,
|
119 |
bos_token_id=0,
|
120 |
eos_token_id=2,
|
121 |
+
attn_implementation="eager",
|
122 |
**kwargs,
|
123 |
):
|
124 |
self.encoder_vocab_size = encoder_vocab_size
|
|
|
147 |
self.num_hidden_layers = encoder_layers
|
148 |
self.scale_embedding = scale_embedding
|
149 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
150 |
+
self.attn_implementation = attn_implementation
|
151 |
+
|
152 |
super().__init__(
|
153 |
pad_token_id=pad_token_id,
|
154 |
bos_token_id=bos_token_id,
|
modeling_indictrans.py
CHANGED
@@ -23,15 +23,28 @@ import torch.nn as nn
|
|
23 |
from torch.nn import functional as F
|
24 |
|
25 |
from transformers.activations import ACT2FN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
27 |
from transformers.modeling_outputs import (
|
28 |
BaseModelOutput,
|
29 |
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
Seq2SeqLMOutput,
|
31 |
-
Seq2SeqModelOutput
|
32 |
)
|
33 |
|
34 |
-
from transformers.utils import
|
|
|
|
|
|
|
|
|
|
|
35 |
from transformers.modeling_utils import PreTrainedModel
|
36 |
|
37 |
from .configuration_indictrans import IndicTransConfig
|
@@ -39,10 +52,25 @@ from .configuration_indictrans import IndicTransConfig
|
|
39 |
|
40 |
logger = logging.get_logger(__name__)
|
41 |
|
42 |
-
_CONFIG_FOR_DOC = "IndicTransConfig"
|
43 |
-
|
44 |
INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
48 |
def shift_tokens_right(
|
@@ -63,54 +91,6 @@ def shift_tokens_right(
|
|
63 |
return shifted_input_ids
|
64 |
|
65 |
|
66 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
67 |
-
def _make_causal_mask(
|
68 |
-
input_ids_shape: torch.Size,
|
69 |
-
dtype: torch.dtype,
|
70 |
-
device: torch.device,
|
71 |
-
past_key_values_length: int = 0,
|
72 |
-
):
|
73 |
-
"""
|
74 |
-
Make causal mask used for bi-directional self-attention.
|
75 |
-
"""
|
76 |
-
bsz, tgt_len = input_ids_shape
|
77 |
-
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
78 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
79 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
80 |
-
mask = mask.to(dtype)
|
81 |
-
|
82 |
-
if past_key_values_length > 0:
|
83 |
-
mask = torch.cat(
|
84 |
-
[
|
85 |
-
torch.zeros(
|
86 |
-
tgt_len, past_key_values_length, dtype=dtype, device=device
|
87 |
-
),
|
88 |
-
mask,
|
89 |
-
],
|
90 |
-
dim=-1,
|
91 |
-
)
|
92 |
-
return mask[None, None, :, :].expand(
|
93 |
-
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
94 |
-
)
|
95 |
-
|
96 |
-
|
97 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
98 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
99 |
-
"""
|
100 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
101 |
-
"""
|
102 |
-
bsz, src_len = mask.size()
|
103 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
104 |
-
|
105 |
-
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
106 |
-
|
107 |
-
inverted_mask = 1.0 - expanded_mask
|
108 |
-
|
109 |
-
return inverted_mask.masked_fill(
|
110 |
-
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
111 |
-
)
|
112 |
-
|
113 |
-
|
114 |
def create_position_ids_from_input_ids(
|
115 |
input_ids, padding_idx, past_key_values_length=0
|
116 |
):
|
@@ -247,12 +227,15 @@ class IndicTransAttention(nn.Module):
|
|
247 |
dropout: float = 0.0,
|
248 |
is_decoder: bool = False,
|
249 |
bias: bool = True,
|
|
|
|
|
250 |
):
|
251 |
super().__init__()
|
252 |
self.embed_dim = embed_dim
|
253 |
self.num_heads = num_heads
|
254 |
self.dropout = dropout
|
255 |
self.head_dim = embed_dim // num_heads
|
|
|
256 |
|
257 |
if (self.head_dim * num_heads) != self.embed_dim:
|
258 |
raise ValueError(
|
@@ -261,6 +244,7 @@ class IndicTransAttention(nn.Module):
|
|
261 |
)
|
262 |
self.scaling = self.head_dim**-0.5
|
263 |
self.is_decoder = is_decoder
|
|
|
264 |
|
265 |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
266 |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
@@ -402,17 +386,345 @@ class IndicTransAttention(nn.Module):
|
|
402 |
attn_output = self.out_proj(attn_output)
|
403 |
|
404 |
return attn_output, attn_weights_reshaped, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->IndicTrans
|
408 |
class IndicTransEncoderLayer(nn.Module):
|
409 |
def __init__(self, config: IndicTransConfig):
|
410 |
super().__init__()
|
411 |
self.embed_dim = config.encoder_embed_dim
|
412 |
-
self.self_attn =
|
413 |
embed_dim=self.embed_dim,
|
414 |
num_heads=config.encoder_attention_heads,
|
415 |
dropout=config.attention_dropout,
|
|
|
416 |
)
|
417 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
418 |
self.dropout = config.dropout
|
@@ -490,22 +802,25 @@ class IndicTransDecoderLayer(nn.Module):
|
|
490 |
super().__init__()
|
491 |
self.embed_dim = config.decoder_embed_dim
|
492 |
|
493 |
-
self.self_attn =
|
494 |
embed_dim=self.embed_dim,
|
495 |
num_heads=config.decoder_attention_heads,
|
496 |
dropout=config.attention_dropout,
|
497 |
is_decoder=True,
|
|
|
|
|
498 |
)
|
499 |
self.dropout = config.dropout
|
500 |
self.activation_fn = ACT2FN[config.activation_function]
|
501 |
self.activation_dropout = config.activation_dropout
|
502 |
|
503 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
504 |
-
self.encoder_attn =
|
505 |
self.embed_dim,
|
506 |
config.decoder_attention_heads,
|
507 |
dropout=config.attention_dropout,
|
508 |
is_decoder=True,
|
|
|
509 |
)
|
510 |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
511 |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
@@ -693,6 +1008,9 @@ class IndicTransEncoder(IndicTransPreTrainedModel):
|
|
693 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
694 |
)
|
695 |
|
|
|
|
|
|
|
696 |
self.gradient_checkpointing = False
|
697 |
# Initialize weights and apply final processing
|
698 |
self.post_init()
|
@@ -782,10 +1100,18 @@ class IndicTransEncoder(IndicTransPreTrainedModel):
|
|
782 |
hidden_states = self.layernorm_embedding(hidden_states)
|
783 |
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
784 |
|
785 |
-
# expand attention_mask
|
786 |
if attention_mask is not None:
|
787 |
-
|
788 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
789 |
|
790 |
encoder_states = () if output_hidden_states else None
|
791 |
all_attentions = () if output_attentions else None
|
@@ -909,6 +1235,9 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
909 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
910 |
)
|
911 |
|
|
|
|
|
|
|
912 |
self.gradient_checkpointing = False
|
913 |
# Initialize weights and apply final processing
|
914 |
self.post_init()
|
@@ -1031,29 +1360,43 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1031 |
if inputs_embeds is None:
|
1032 |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1033 |
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
|
|
|
|
|
|
|
|
1039 |
input_shape,
|
1040 |
-
inputs_embeds
|
1041 |
-
|
1042 |
-
past_key_values_length=past_key_values_length,
|
1043 |
)
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
-
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1049 |
)
|
1050 |
|
1051 |
# expand encoder attention mask
|
1052 |
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1057 |
|
1058 |
# embed positions
|
1059 |
positions = self.embed_positions(
|
@@ -1124,7 +1467,7 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1124 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1125 |
create_custom_forward(decoder_layer),
|
1126 |
hidden_states,
|
1127 |
-
|
1128 |
encoder_hidden_states,
|
1129 |
encoder_attention_mask,
|
1130 |
head_mask[idx] if head_mask is not None else None,
|
@@ -1136,7 +1479,7 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1136 |
else:
|
1137 |
layer_outputs = decoder_layer(
|
1138 |
hidden_states,
|
1139 |
-
attention_mask=
|
1140 |
encoder_hidden_states=encoder_hidden_states,
|
1141 |
encoder_attention_mask=encoder_attention_mask,
|
1142 |
layer_head_mask=(
|
|
|
23 |
from torch.nn import functional as F
|
24 |
|
25 |
from transformers.activations import ACT2FN
|
26 |
+
|
27 |
+
from transformers.modeling_attn_mask_utils import (
|
28 |
+
_prepare_4d_attention_mask,
|
29 |
+
_prepare_4d_attention_mask_for_sdpa,
|
30 |
+
_prepare_4d_causal_attention_mask,
|
31 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
32 |
+
)
|
33 |
+
|
34 |
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
35 |
from transformers.modeling_outputs import (
|
36 |
BaseModelOutput,
|
37 |
BaseModelOutputWithPastAndCrossAttentions,
|
38 |
Seq2SeqLMOutput,
|
39 |
+
Seq2SeqModelOutput
|
40 |
)
|
41 |
|
42 |
+
from transformers.utils import (
|
43 |
+
logging,
|
44 |
+
is_flash_attn_2_available,
|
45 |
+
is_flash_attn_greater_or_equal_2_10,
|
46 |
+
)
|
47 |
+
|
48 |
from transformers.modeling_utils import PreTrainedModel
|
49 |
|
50 |
from .configuration_indictrans import IndicTransConfig
|
|
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
54 |
|
|
|
|
|
55 |
INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
56 |
|
57 |
+
if is_flash_attn_2_available():
|
58 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
59 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
60 |
+
|
61 |
+
|
62 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
63 |
+
def _get_unpad_data(attention_mask):
|
64 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
65 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
66 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
67 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
68 |
+
return (
|
69 |
+
indices,
|
70 |
+
cu_seqlens,
|
71 |
+
max_seqlen_in_batch,
|
72 |
+
)
|
73 |
+
|
74 |
|
75 |
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
76 |
def shift_tokens_right(
|
|
|
91 |
return shifted_input_ids
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def create_position_ids_from_input_ids(
|
95 |
input_ids, padding_idx, past_key_values_length=0
|
96 |
):
|
|
|
227 |
dropout: float = 0.0,
|
228 |
is_decoder: bool = False,
|
229 |
bias: bool = True,
|
230 |
+
is_causal: bool = False,
|
231 |
+
config: Optional[IndicTransConfig] = None,
|
232 |
):
|
233 |
super().__init__()
|
234 |
self.embed_dim = embed_dim
|
235 |
self.num_heads = num_heads
|
236 |
self.dropout = dropout
|
237 |
self.head_dim = embed_dim // num_heads
|
238 |
+
self.config = config
|
239 |
|
240 |
if (self.head_dim * num_heads) != self.embed_dim:
|
241 |
raise ValueError(
|
|
|
244 |
)
|
245 |
self.scaling = self.head_dim**-0.5
|
246 |
self.is_decoder = is_decoder
|
247 |
+
self.is_causal = is_causal
|
248 |
|
249 |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
250 |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
386 |
attn_output = self.out_proj(attn_output)
|
387 |
|
388 |
return attn_output, attn_weights_reshaped, past_key_value
|
389 |
+
|
390 |
+
|
391 |
+
class IndicTransFlashAttention2(IndicTransAttention):
|
392 |
+
"""
|
393 |
+
IndicTrans flash attention module. This module inherits from `IndicTransAttention` as the weights of the module stays
|
394 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
395 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
396 |
+
"""
|
397 |
+
|
398 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
399 |
+
def __init__(self, *args, **kwargs):
|
400 |
+
super().__init__(*args, **kwargs)
|
401 |
+
|
402 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
403 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
404 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
405 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
406 |
+
|
407 |
+
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
408 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
409 |
+
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
hidden_states: torch.Tensor,
|
413 |
+
key_value_states: Optional[torch.Tensor] = None,
|
414 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
415 |
+
attention_mask: Optional[torch.Tensor] = None,
|
416 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
417 |
+
output_attentions: bool = False,
|
418 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
419 |
+
# IndicTransFlashAttention2 attention does not support output_attentions
|
420 |
+
if output_attentions:
|
421 |
+
raise ValueError("IndicTransFlashAttention2 attention does not support output_attentions")
|
422 |
+
|
423 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
424 |
+
# for the decoder
|
425 |
+
is_cross_attention = key_value_states is not None
|
426 |
+
|
427 |
+
bsz, q_len, _ = hidden_states.size()
|
428 |
+
|
429 |
+
# get query proj
|
430 |
+
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
|
431 |
+
# get key, value proj
|
432 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
433 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
434 |
+
# the provided `key_value_states` to support prefix tuning
|
435 |
+
if (
|
436 |
+
is_cross_attention
|
437 |
+
and past_key_value is not None
|
438 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
439 |
+
):
|
440 |
+
# reuse k,v, cross_attentions
|
441 |
+
key_states = past_key_value[0].transpose(1, 2)
|
442 |
+
value_states = past_key_value[1].transpose(1, 2)
|
443 |
+
elif is_cross_attention:
|
444 |
+
# cross_attentions
|
445 |
+
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
|
446 |
+
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
|
447 |
+
elif past_key_value is not None:
|
448 |
+
# reuse k, v, self_attention
|
449 |
+
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
450 |
+
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
451 |
+
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
|
452 |
+
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
|
453 |
+
else:
|
454 |
+
# self_attention
|
455 |
+
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
456 |
+
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
457 |
+
|
458 |
+
if self.is_decoder:
|
459 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
460 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
461 |
+
# key/value_states (first "if" case)
|
462 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
463 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
464 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
465 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
466 |
+
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
|
467 |
+
|
468 |
+
kv_seq_len = key_states.shape[-2]
|
469 |
+
if past_key_value is not None:
|
470 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
471 |
+
|
472 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
473 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
474 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
475 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
476 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
477 |
+
|
478 |
+
input_dtype = query_states.dtype
|
479 |
+
if input_dtype == torch.float32:
|
480 |
+
if torch.is_autocast_enabled():
|
481 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
482 |
+
# Handle the case where the model is quantized
|
483 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
484 |
+
target_dtype = self.config._pre_quantization_dtype
|
485 |
+
else:
|
486 |
+
target_dtype = self.q_proj.weight.dtype
|
487 |
+
|
488 |
+
logger.warning_once(
|
489 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
490 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
491 |
+
f" {target_dtype}."
|
492 |
+
)
|
493 |
+
|
494 |
+
query_states = query_states.to(target_dtype)
|
495 |
+
key_states = key_states.to(target_dtype)
|
496 |
+
value_states = value_states.to(target_dtype)
|
497 |
+
|
498 |
+
attn_output = self._flash_attention_forward(
|
499 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
|
500 |
+
)
|
501 |
+
|
502 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
503 |
+
attn_output = self.out_proj(attn_output)
|
504 |
+
|
505 |
+
if not output_attentions:
|
506 |
+
attn_weights = None
|
507 |
+
|
508 |
+
return attn_output, attn_weights, past_key_value
|
509 |
+
|
510 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
511 |
+
def _flash_attention_forward(
|
512 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
513 |
+
):
|
514 |
+
"""
|
515 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
516 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
517 |
+
|
518 |
+
Args:
|
519 |
+
query_states (`torch.Tensor`):
|
520 |
+
Input query states to be passed to Flash Attention API
|
521 |
+
key_states (`torch.Tensor`):
|
522 |
+
Input key states to be passed to Flash Attention API
|
523 |
+
value_states (`torch.Tensor`):
|
524 |
+
Input value states to be passed to Flash Attention API
|
525 |
+
attention_mask (`torch.Tensor`):
|
526 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
527 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
528 |
+
dropout (`float`):
|
529 |
+
Attention dropout
|
530 |
+
softmax_scale (`float`, *optional*):
|
531 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
532 |
+
"""
|
533 |
+
if not self._flash_attn_uses_top_left_mask:
|
534 |
+
causal = self.is_causal
|
535 |
+
else:
|
536 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
537 |
+
causal = self.is_causal and query_length != 1
|
538 |
+
|
539 |
+
# Contains at least one padding token in the sequence
|
540 |
+
if attention_mask is not None:
|
541 |
+
batch_size = query_states.shape[0]
|
542 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
543 |
+
query_states, key_states, value_states, attention_mask, query_length
|
544 |
+
)
|
545 |
+
|
546 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
547 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
548 |
+
|
549 |
+
attn_output_unpad = flash_attn_varlen_func(
|
550 |
+
query_states,
|
551 |
+
key_states,
|
552 |
+
value_states,
|
553 |
+
cu_seqlens_q=cu_seqlens_q,
|
554 |
+
cu_seqlens_k=cu_seqlens_k,
|
555 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
556 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
557 |
+
dropout_p=dropout,
|
558 |
+
softmax_scale=softmax_scale,
|
559 |
+
causal=causal,
|
560 |
+
)
|
561 |
+
|
562 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
563 |
+
else:
|
564 |
+
attn_output = flash_attn_func(
|
565 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
566 |
+
)
|
567 |
+
|
568 |
+
return attn_output
|
569 |
|
570 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
571 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
572 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
573 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
574 |
+
|
575 |
+
key_layer = index_first_axis(
|
576 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
577 |
+
)
|
578 |
+
value_layer = index_first_axis(
|
579 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
580 |
+
)
|
581 |
+
if query_length == kv_seq_len:
|
582 |
+
query_layer = index_first_axis(
|
583 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
584 |
+
)
|
585 |
+
cu_seqlens_q = cu_seqlens_k
|
586 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
587 |
+
indices_q = indices_k
|
588 |
+
elif query_length == 1:
|
589 |
+
max_seqlen_in_batch_q = 1
|
590 |
+
cu_seqlens_q = torch.arange(
|
591 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
592 |
+
) # There is a memcpy here, that is very bad.
|
593 |
+
indices_q = cu_seqlens_q[:-1]
|
594 |
+
query_layer = query_layer.squeeze(1)
|
595 |
+
else:
|
596 |
+
# The -q_len: slice assumes left padding.
|
597 |
+
attention_mask = attention_mask[:, -query_length:]
|
598 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
599 |
+
|
600 |
+
return (
|
601 |
+
query_layer,
|
602 |
+
key_layer,
|
603 |
+
value_layer,
|
604 |
+
indices_q,
|
605 |
+
(cu_seqlens_q, cu_seqlens_k),
|
606 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
607 |
+
)
|
608 |
+
|
609 |
+
|
610 |
+
class IndicTransSdpaAttention(IndicTransAttention):
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
hidden_states: torch.Tensor,
|
614 |
+
key_value_states: Optional[torch.Tensor] = None,
|
615 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
616 |
+
attention_mask: Optional[torch.Tensor] = None,
|
617 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
618 |
+
output_attentions: bool = False,
|
619 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
620 |
+
"""Input shape: Batch x Time x Channel"""
|
621 |
+
if output_attentions or layer_head_mask is not None:
|
622 |
+
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
623 |
+
logger.warning_once(
|
624 |
+
"IndicTransModel is using IndicTransSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
625 |
+
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
626 |
+
)
|
627 |
+
return super().forward(
|
628 |
+
hidden_states,
|
629 |
+
key_value_states=key_value_states,
|
630 |
+
past_key_value=past_key_value,
|
631 |
+
attention_mask=attention_mask,
|
632 |
+
layer_head_mask=layer_head_mask,
|
633 |
+
output_attentions=output_attentions,
|
634 |
+
)
|
635 |
+
|
636 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
637 |
+
# for the decoder
|
638 |
+
is_cross_attention = key_value_states is not None
|
639 |
+
|
640 |
+
bsz, tgt_len, _ = hidden_states.size()
|
641 |
+
|
642 |
+
# get query proj
|
643 |
+
query_states = self.q_proj(hidden_states)
|
644 |
+
# get key, value proj
|
645 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
646 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
647 |
+
# the provided `key_value_states` to support prefix tuning
|
648 |
+
if (
|
649 |
+
is_cross_attention
|
650 |
+
and past_key_value is not None
|
651 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
652 |
+
):
|
653 |
+
# reuse k,v, cross_attentions
|
654 |
+
key_states = past_key_value[0]
|
655 |
+
value_states = past_key_value[1]
|
656 |
+
elif is_cross_attention:
|
657 |
+
# cross_attentions
|
658 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
659 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
660 |
+
elif past_key_value is not None:
|
661 |
+
# reuse k, v, self_attention
|
662 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
663 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
664 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
665 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
666 |
+
else:
|
667 |
+
# self_attention
|
668 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
669 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
670 |
+
|
671 |
+
if self.is_decoder:
|
672 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
673 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
674 |
+
# key/value_states (first "if" case)
|
675 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
676 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
677 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
678 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
679 |
+
past_key_value = (key_states, value_states)
|
680 |
+
|
681 |
+
query_states = self._shape(query_states, tgt_len, bsz)
|
682 |
+
|
683 |
+
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
|
684 |
+
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
|
685 |
+
attn_output = F.scaled_dot_product_attention(
|
686 |
+
query_states,
|
687 |
+
key_states,
|
688 |
+
value_states,
|
689 |
+
attn_mask=attention_mask,
|
690 |
+
dropout_p=self.dropout if self.training else 0.0,
|
691 |
+
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
|
692 |
+
is_causal=self.is_causal and attention_mask is None and tgt_len > 1,
|
693 |
+
)
|
694 |
+
|
695 |
+
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
696 |
+
raise ValueError(
|
697 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
698 |
+
f" {attn_output.size()}"
|
699 |
+
)
|
700 |
+
|
701 |
+
attn_output = attn_output.transpose(1, 2)
|
702 |
+
|
703 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
704 |
+
# partitioned across GPUs when using tensor-parallelism.
|
705 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
706 |
+
|
707 |
+
attn_output = self.out_proj(attn_output)
|
708 |
+
|
709 |
+
return attn_output, None, past_key_value
|
710 |
+
|
711 |
+
|
712 |
+
INDICTRANS_ATTENTION_CLASSES = {
|
713 |
+
"eager": IndicTransAttention,
|
714 |
+
"sdpa": IndicTransSdpaAttention,
|
715 |
+
"flash_attention_2": IndicTransFlashAttention2,
|
716 |
+
}
|
717 |
|
718 |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->IndicTrans
|
719 |
class IndicTransEncoderLayer(nn.Module):
|
720 |
def __init__(self, config: IndicTransConfig):
|
721 |
super().__init__()
|
722 |
self.embed_dim = config.encoder_embed_dim
|
723 |
+
self.self_attn = INDICTRANS_ATTENTION_CLASSES[config._attn_implementation](
|
724 |
embed_dim=self.embed_dim,
|
725 |
num_heads=config.encoder_attention_heads,
|
726 |
dropout=config.attention_dropout,
|
727 |
+
config=config,
|
728 |
)
|
729 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
730 |
self.dropout = config.dropout
|
|
|
802 |
super().__init__()
|
803 |
self.embed_dim = config.decoder_embed_dim
|
804 |
|
805 |
+
self.self_attn = INDICTRANS_ATTENTION_CLASSES[config._attn_implementation](
|
806 |
embed_dim=self.embed_dim,
|
807 |
num_heads=config.decoder_attention_heads,
|
808 |
dropout=config.attention_dropout,
|
809 |
is_decoder=True,
|
810 |
+
is_causal=True,
|
811 |
+
config=config,
|
812 |
)
|
813 |
self.dropout = config.dropout
|
814 |
self.activation_fn = ACT2FN[config.activation_function]
|
815 |
self.activation_dropout = config.activation_dropout
|
816 |
|
817 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
818 |
+
self.encoder_attn = INDICTRANS_ATTENTION_CLASSES[config._attn_implementation](
|
819 |
self.embed_dim,
|
820 |
config.decoder_attention_heads,
|
821 |
dropout=config.attention_dropout,
|
822 |
is_decoder=True,
|
823 |
+
config=config,
|
824 |
)
|
825 |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
826 |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
|
|
1008 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
1009 |
)
|
1010 |
|
1011 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1012 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1013 |
+
|
1014 |
self.gradient_checkpointing = False
|
1015 |
# Initialize weights and apply final processing
|
1016 |
self.post_init()
|
|
|
1100 |
hidden_states = self.layernorm_embedding(hidden_states)
|
1101 |
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
1102 |
|
|
|
1103 |
if attention_mask is not None:
|
1104 |
+
if self._use_flash_attention_2:
|
1105 |
+
attention_mask = attention_mask if 0 in attention_mask else None
|
1106 |
+
elif self._use_sdpa and head_mask is None and not output_attentions:
|
1107 |
+
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
|
1108 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1109 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1110 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
|
1111 |
+
else:
|
1112 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1113 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
1114 |
+
|
1115 |
|
1116 |
encoder_states = () if output_hidden_states else None
|
1117 |
all_attentions = () if output_attentions else None
|
|
|
1235 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
1236 |
)
|
1237 |
|
1238 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1239 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1240 |
+
|
1241 |
self.gradient_checkpointing = False
|
1242 |
# Initialize weights and apply final processing
|
1243 |
self.post_init()
|
|
|
1360 |
if inputs_embeds is None:
|
1361 |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1362 |
|
1363 |
+
|
1364 |
+
if self._use_flash_attention_2:
|
1365 |
+
# 2d mask is passed through the layers
|
1366 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1367 |
+
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
|
1368 |
+
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1369 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1370 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1371 |
+
attention_mask,
|
1372 |
input_shape,
|
1373 |
+
inputs_embeds,
|
1374 |
+
past_key_values_length,
|
|
|
1375 |
)
|
1376 |
+
else:
|
1377 |
+
# 4d mask is passed through the layers
|
1378 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1379 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
|
|
1380 |
)
|
1381 |
|
1382 |
# expand encoder attention mask
|
1383 |
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1384 |
+
if self._use_flash_attention_2:
|
1385 |
+
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
|
1386 |
+
elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
|
1387 |
+
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1388 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1389 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1390 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1391 |
+
encoder_attention_mask,
|
1392 |
+
inputs_embeds.dtype,
|
1393 |
+
tgt_len=input_shape[-1],
|
1394 |
+
)
|
1395 |
+
else:
|
1396 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1397 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
1398 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1399 |
+
)
|
1400 |
|
1401 |
# embed positions
|
1402 |
positions = self.embed_positions(
|
|
|
1467 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1468 |
create_custom_forward(decoder_layer),
|
1469 |
hidden_states,
|
1470 |
+
attention_mask,
|
1471 |
encoder_hidden_states,
|
1472 |
encoder_attention_mask,
|
1473 |
head_mask[idx] if head_mask is not None else None,
|
|
|
1479 |
else:
|
1480 |
layer_outputs = decoder_layer(
|
1481 |
hidden_states,
|
1482 |
+
attention_mask=attention_mask,
|
1483 |
encoder_hidden_states=encoder_hidden_states,
|
1484 |
encoder_attention_mask=encoder_attention_mask,
|
1485 |
layer_head_mask=(
|