File size: 1,305 Bytes
f84051c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
thumbnail: https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/jg2NWmCUfPyzizm2USjMt.jpeg
datasets:
- NewEden/Orion-LIT
- NewEden/Orion-Asstr-Stories-16K
- Mielikki/Erebus-87k
- PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
- Nitral-AI/ARES-ShareGPT
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
- NewEden/Claude-Instruct-2.7K
- NewEden/Claude-Instruct-5K
base_model: Delta-Vector/Hamanasu-15B-Instruct
tags:
- phi
- roleplay
- finetune
- storywriting
- mlx
- mlx-my-repo
---
# aimeri/Hamanasu-15B-Instruct-6bit
The Model [aimeri/Hamanasu-15B-Instruct-6bit](https://huggingface.co/aimeri/Hamanasu-15B-Instruct-6bit) was converted to MLX format from [Delta-Vector/Hamanasu-15B-Instruct](https://huggingface.co/Delta-Vector/Hamanasu-15B-Instruct) using mlx-lm version **0.21.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("aimeri/Hamanasu-15B-Instruct-6bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|