--- thumbnail: https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/jg2NWmCUfPyzizm2USjMt.jpeg datasets: - NewEden/Orion-LIT - NewEden/Orion-Asstr-Stories-16K - Mielikki/Erebus-87k - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small - Nitral-AI/ARES-ShareGPT - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k - NewEden/Claude-Instruct-2.7K - NewEden/Claude-Instruct-5K base_model: Delta-Vector/Hamanasu-15B-Instruct tags: - phi - roleplay - finetune - storywriting - mlx - mlx-my-repo --- # aimeri/Hamanasu-15B-Instruct-6bit The Model [aimeri/Hamanasu-15B-Instruct-6bit](https://huggingface.co/aimeri/Hamanasu-15B-Instruct-6bit) was converted to MLX format from [Delta-Vector/Hamanasu-15B-Instruct](https://huggingface.co/Delta-Vector/Hamanasu-15B-Instruct) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("aimeri/Hamanasu-15B-Instruct-6bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```