ak0327 commited on
Commit
4d8841d
·
verified ·
1 Parent(s): c64a86b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md CHANGED
@@ -20,3 +20,86 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+
25
+
26
+ # How to use
27
+
28
+ ```Python
29
+
30
+ def load_model(model_name):
31
+ # QLoRA config
32
+ bnb_config = BitsAndBytesConfig(
33
+ load_in_4bit=True,
34
+ bnb_4bit_quant_type="nf4",
35
+ bnb_4bit_compute_dtype=torch.bfloat16,
36
+ bnb_4bit_use_double_quant=False,
37
+ )
38
+
39
+ # Load model
40
+ model = AutoModelForCausalLM.from_pretrained(
41
+ model_name,
42
+ quantization_config=bnb_config,
43
+ device_map="auto",
44
+ token=HF_TOKEN
45
+ )
46
+
47
+ # Load tokenizer
48
+ tokenizer = AutoTokenizer.from_pretrained(
49
+ model_name,
50
+ trust_remote_code=True,
51
+ token=HF_TOKEN
52
+ )
53
+ return model, tokenizer
54
+
55
+
56
+ def inference(datasets, model, tokenizer):
57
+ _results = []
58
+ for data in tqdm(datasets):
59
+ input = data["input"]
60
+
61
+ prompt = f"""### 指示
62
+ {input}
63
+ ### 回答:
64
+ """
65
+
66
+ encoded_input = tokenizer.encode_plus(
67
+ prompt,
68
+ add_special_tokens=False,
69
+ return_tensors="pt",
70
+ padding=True,
71
+ truncation=True,
72
+ ).to(model.device)
73
+
74
+ tokenized_input = encoded_input["input_ids"]
75
+ attention_mask = encoded_input["attention_mask"]
76
+
77
+ with torch.no_grad():
78
+ outputs = model.generate(
79
+ tokenized_input,
80
+ attention_mask=attention_mask,
81
+ max_new_tokens=100,
82
+ do_sample=False,
83
+ repetition_penalty=1.2,
84
+ pad_token_id=tokenizer.pad_token_id
85
+ )[0]
86
+
87
+ output = tokenizer.decode(
88
+ outputs[tokenized_input.size(1):],
89
+ skip_special_tokens=True
90
+ )
91
+
92
+ _results.append({
93
+ "task_id": data["task_id"],
94
+ "input": input,
95
+ "output": output
96
+ })
97
+ return _results
98
+
99
+
100
+ model_name = "ak0327/llm-jp-3-13b-finetune-2"
101
+
102
+ model, tokenizer = load_model(model_name)
103
+ datasets = load_test_datasets() # your datasets
104
+ results = inference(model_name, datasets, model, tokenizer)
105
+ ```