File size: 2,163 Bytes
97d6b09
6cd812b
 
 
ee35339
aca3fb6
 
6cd812b
 
 
97d6b09
 
6cd812b
 
97d6b09
6cd812b
97d6b09
6cd812b
aca3fb6
9d1171d
 
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
97d6b09
6cd812b
 
 
 
 
 
 
 
 
aca3fb6
 
 
 
 
9d1171d
 
 
 
 
 
 
 
 
 
 
 
 
aca3fb6
97d6b09
6cd812b
97d6b09
cff3da3
6cd812b
cff3da3
6cd812b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
metrics:
- wer
model-index:
- name: xlsr-wav2vec2-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlsr-wav2vec2-model

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8086
- Wer: 0.4364

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 7.4037        | 2.1645  | 500  | 3.5799          | 1.0    |
| 2.9066        | 4.3290  | 1000 | 3.0843          | 1.0    |
| 2.1161        | 6.4935  | 1500 | 1.1052          | 0.7927 |
| 1.0022        | 8.6580  | 2000 | 0.7942          | 0.6240 |
| 0.6621        | 10.8225 | 2500 | 0.7538          | 0.5438 |
| 0.5084        | 12.9870 | 3000 | 0.6946          | 0.5070 |
| 0.3937        | 15.1515 | 3500 | 0.7098          | 0.4751 |
| 0.3267        | 17.3160 | 4000 | 0.7231          | 0.4620 |
| 0.2675        | 19.4805 | 4500 | 0.7481          | 0.4604 |
| 0.2308        | 21.6450 | 5000 | 0.7755          | 0.4594 |
| 0.199         | 23.8095 | 5500 | 0.7615          | 0.4438 |
| 0.1803        | 25.9740 | 6000 | 0.8217          | 0.4358 |
| 0.1599        | 28.1385 | 6500 | 0.8086          | 0.4364 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1