Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +225 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: OpenR1-Qwen2.5-3B-Instruct-Agentic
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for OpenR1-Qwen2.5-3B-Instruct-Agentic
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="akseljoonas/OpenR1-Qwen2.5-3B-Instruct-Agentic", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/qvlqx19a)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0
|
38 |
+
- Transformers: 4.50.0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.5.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 38524314714112.0,
|
3 |
+
"train_loss": 0.5417864180955232,
|
4 |
+
"train_runtime": 489.9093,
|
5 |
+
"train_samples": 1928,
|
6 |
+
"train_samples_per_second": 6.601,
|
7 |
+
"train_steps_per_second": 0.208
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.50.0"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 38524314714112.0,
|
3 |
+
"train_loss": 0.5417864180955232,
|
4 |
+
"train_runtime": 489.9093,
|
5 |
+
"train_samples": 1928,
|
6 |
+
"train_samples_per_second": 6.601,
|
7 |
+
"train_steps_per_second": 0.208
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 6.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 102,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.29411764705882354,
|
14 |
+
"grad_norm": 0.936604829628833,
|
15 |
+
"learning_rate": 2.272727272727273e-05,
|
16 |
+
"loss": 1.1168,
|
17 |
+
"mean_token_accuracy": 0.7593136191368103,
|
18 |
+
"num_tokens": 1259362.0,
|
19 |
+
"step": 5
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.5882352941176471,
|
23 |
+
"grad_norm": 0.5332485745183476,
|
24 |
+
"learning_rate": 4.545454545454546e-05,
|
25 |
+
"loss": 1.0323,
|
26 |
+
"mean_token_accuracy": 0.7697360038757324,
|
27 |
+
"num_tokens": 2505918.0,
|
28 |
+
"step": 10
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.8823529411764706,
|
32 |
+
"grad_norm": 0.49292553464899896,
|
33 |
+
"learning_rate": 4.7802197802197806e-05,
|
34 |
+
"loss": 0.9373,
|
35 |
+
"mean_token_accuracy": 0.7903875827789306,
|
36 |
+
"num_tokens": 3789164.0,
|
37 |
+
"step": 15
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 1.1764705882352942,
|
41 |
+
"grad_norm": 0.5104995055207949,
|
42 |
+
"learning_rate": 4.505494505494506e-05,
|
43 |
+
"loss": 0.8708,
|
44 |
+
"mean_token_accuracy": 0.8042230725288391,
|
45 |
+
"num_tokens": 5044302.0,
|
46 |
+
"step": 20
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 1.4705882352941178,
|
50 |
+
"grad_norm": 0.4046059544307743,
|
51 |
+
"learning_rate": 4.230769230769231e-05,
|
52 |
+
"loss": 0.7304,
|
53 |
+
"mean_token_accuracy": 0.829165768623352,
|
54 |
+
"num_tokens": 6307507.0,
|
55 |
+
"step": 25
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 1.7647058823529411,
|
59 |
+
"grad_norm": 0.37010490881053304,
|
60 |
+
"learning_rate": 3.956043956043956e-05,
|
61 |
+
"loss": 0.6545,
|
62 |
+
"mean_token_accuracy": 0.8425032556056976,
|
63 |
+
"num_tokens": 7567565.0,
|
64 |
+
"step": 30
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 2.0588235294117645,
|
68 |
+
"grad_norm": 0.4890639887000688,
|
69 |
+
"learning_rate": 3.6813186813186815e-05,
|
70 |
+
"loss": 0.6918,
|
71 |
+
"mean_token_accuracy": 0.8333606243133544,
|
72 |
+
"num_tokens": 8844929.0,
|
73 |
+
"step": 35
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 2.3529411764705883,
|
77 |
+
"grad_norm": 0.49328824852791164,
|
78 |
+
"learning_rate": 3.406593406593407e-05,
|
79 |
+
"loss": 0.5679,
|
80 |
+
"mean_token_accuracy": 0.861074560880661,
|
81 |
+
"num_tokens": 10134115.0,
|
82 |
+
"step": 40
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 2.6470588235294117,
|
86 |
+
"grad_norm": 0.4698134986650175,
|
87 |
+
"learning_rate": 3.131868131868132e-05,
|
88 |
+
"loss": 0.5474,
|
89 |
+
"mean_token_accuracy": 0.8665568113327027,
|
90 |
+
"num_tokens": 11370866.0,
|
91 |
+
"step": 45
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 2.9411764705882355,
|
95 |
+
"grad_norm": 0.37185312666387604,
|
96 |
+
"learning_rate": 2.857142857142857e-05,
|
97 |
+
"loss": 0.4938,
|
98 |
+
"mean_token_accuracy": 0.8755107343196868,
|
99 |
+
"num_tokens": 12624430.0,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 3.235294117647059,
|
104 |
+
"grad_norm": 0.4634355315355426,
|
105 |
+
"learning_rate": 2.582417582417583e-05,
|
106 |
+
"loss": 0.447,
|
107 |
+
"mean_token_accuracy": 0.889778733253479,
|
108 |
+
"num_tokens": 13909265.0,
|
109 |
+
"step": 55
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 3.5294117647058822,
|
113 |
+
"grad_norm": 0.5738029325235413,
|
114 |
+
"learning_rate": 2.307692307692308e-05,
|
115 |
+
"loss": 0.3707,
|
116 |
+
"mean_token_accuracy": 0.9037276983261109,
|
117 |
+
"num_tokens": 15169754.0,
|
118 |
+
"step": 60
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 3.8235294117647056,
|
122 |
+
"grad_norm": 0.44295053306971394,
|
123 |
+
"learning_rate": 2.032967032967033e-05,
|
124 |
+
"loss": 0.4328,
|
125 |
+
"mean_token_accuracy": 0.8942916512489318,
|
126 |
+
"num_tokens": 16426375.0,
|
127 |
+
"step": 65
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 4.117647058823529,
|
131 |
+
"grad_norm": 0.48600735056350475,
|
132 |
+
"learning_rate": 1.7582417582417584e-05,
|
133 |
+
"loss": 0.4355,
|
134 |
+
"mean_token_accuracy": 0.8996923744678498,
|
135 |
+
"num_tokens": 17685022.0,
|
136 |
+
"step": 70
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 4.411764705882353,
|
140 |
+
"grad_norm": 0.6270999510091785,
|
141 |
+
"learning_rate": 1.4835164835164836e-05,
|
142 |
+
"loss": 0.3213,
|
143 |
+
"mean_token_accuracy": 0.9201981544494628,
|
144 |
+
"num_tokens": 18972948.0,
|
145 |
+
"step": 75
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 4.705882352941177,
|
149 |
+
"grad_norm": 0.5582166829408877,
|
150 |
+
"learning_rate": 1.2087912087912089e-05,
|
151 |
+
"loss": 0.3534,
|
152 |
+
"mean_token_accuracy": 0.9134442567825317,
|
153 |
+
"num_tokens": 20241749.0,
|
154 |
+
"step": 80
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 5.0,
|
158 |
+
"grad_norm": 0.44013642641683465,
|
159 |
+
"learning_rate": 9.340659340659341e-06,
|
160 |
+
"loss": 0.2391,
|
161 |
+
"mean_token_accuracy": 0.9390455543994903,
|
162 |
+
"num_tokens": 21475135.0,
|
163 |
+
"step": 85
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 5.294117647058823,
|
167 |
+
"grad_norm": 0.3728640621917392,
|
168 |
+
"learning_rate": 6.5934065934065935e-06,
|
169 |
+
"loss": 0.3093,
|
170 |
+
"mean_token_accuracy": 0.9262847900390625,
|
171 |
+
"num_tokens": 22722522.0,
|
172 |
+
"step": 90
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 5.588235294117647,
|
176 |
+
"grad_norm": 0.37920869196649243,
|
177 |
+
"learning_rate": 3.846153846153847e-06,
|
178 |
+
"loss": 0.2553,
|
179 |
+
"mean_token_accuracy": 0.9366285502910614,
|
180 |
+
"num_tokens": 23999790.0,
|
181 |
+
"step": 95
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 5.882352941176471,
|
185 |
+
"grad_norm": 0.3560598736684562,
|
186 |
+
"learning_rate": 1.098901098901099e-06,
|
187 |
+
"loss": 0.2146,
|
188 |
+
"mean_token_accuracy": 0.94760302901268,
|
189 |
+
"num_tokens": 25261256.0,
|
190 |
+
"step": 100
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 6.0,
|
194 |
+
"mean_token_accuracy": 0.9418431520462036,
|
195 |
+
"num_tokens": 25768100.0,
|
196 |
+
"step": 102,
|
197 |
+
"total_flos": 38524314714112.0,
|
198 |
+
"train_loss": 0.5417864180955232,
|
199 |
+
"train_runtime": 489.9093,
|
200 |
+
"train_samples_per_second": 6.601,
|
201 |
+
"train_steps_per_second": 0.208
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"logging_steps": 5,
|
205 |
+
"max_steps": 102,
|
206 |
+
"num_input_tokens_seen": 0,
|
207 |
+
"num_train_epochs": 6,
|
208 |
+
"save_steps": 500,
|
209 |
+
"stateful_callbacks": {
|
210 |
+
"TrainerControl": {
|
211 |
+
"args": {
|
212 |
+
"should_epoch_stop": false,
|
213 |
+
"should_evaluate": false,
|
214 |
+
"should_log": false,
|
215 |
+
"should_save": true,
|
216 |
+
"should_training_stop": true
|
217 |
+
},
|
218 |
+
"attributes": {}
|
219 |
+
}
|
220 |
+
},
|
221 |
+
"total_flos": 38524314714112.0,
|
222 |
+
"train_batch_size": 2,
|
223 |
+
"trial_name": null,
|
224 |
+
"trial_params": null
|
225 |
+
}
|