akseljoonas HF Staff commited on
Commit
abc16f8
·
verified ·
1 Parent(s): 624264a

Model save

Browse files
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: OpenR1-Qwen2.5-3B-Instruct-Agentic
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for OpenR1-Qwen2.5-3B-Instruct-Agentic
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="akseljoonas/OpenR1-Qwen2.5-3B-Instruct-Agentic", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/qvlqx19a)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.50.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.5.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 38524314714112.0,
3
+ "train_loss": 0.5417864180955232,
4
+ "train_runtime": 489.9093,
5
+ "train_samples": 1928,
6
+ "train_samples_per_second": 6.601,
7
+ "train_steps_per_second": 0.208
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.50.0"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 38524314714112.0,
3
+ "train_loss": 0.5417864180955232,
4
+ "train_runtime": 489.9093,
5
+ "train_samples": 1928,
6
+ "train_samples_per_second": 6.601,
7
+ "train_steps_per_second": 0.208
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 6.0,
6
+ "eval_steps": 500,
7
+ "global_step": 102,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.29411764705882354,
14
+ "grad_norm": 0.936604829628833,
15
+ "learning_rate": 2.272727272727273e-05,
16
+ "loss": 1.1168,
17
+ "mean_token_accuracy": 0.7593136191368103,
18
+ "num_tokens": 1259362.0,
19
+ "step": 5
20
+ },
21
+ {
22
+ "epoch": 0.5882352941176471,
23
+ "grad_norm": 0.5332485745183476,
24
+ "learning_rate": 4.545454545454546e-05,
25
+ "loss": 1.0323,
26
+ "mean_token_accuracy": 0.7697360038757324,
27
+ "num_tokens": 2505918.0,
28
+ "step": 10
29
+ },
30
+ {
31
+ "epoch": 0.8823529411764706,
32
+ "grad_norm": 0.49292553464899896,
33
+ "learning_rate": 4.7802197802197806e-05,
34
+ "loss": 0.9373,
35
+ "mean_token_accuracy": 0.7903875827789306,
36
+ "num_tokens": 3789164.0,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 1.1764705882352942,
41
+ "grad_norm": 0.5104995055207949,
42
+ "learning_rate": 4.505494505494506e-05,
43
+ "loss": 0.8708,
44
+ "mean_token_accuracy": 0.8042230725288391,
45
+ "num_tokens": 5044302.0,
46
+ "step": 20
47
+ },
48
+ {
49
+ "epoch": 1.4705882352941178,
50
+ "grad_norm": 0.4046059544307743,
51
+ "learning_rate": 4.230769230769231e-05,
52
+ "loss": 0.7304,
53
+ "mean_token_accuracy": 0.829165768623352,
54
+ "num_tokens": 6307507.0,
55
+ "step": 25
56
+ },
57
+ {
58
+ "epoch": 1.7647058823529411,
59
+ "grad_norm": 0.37010490881053304,
60
+ "learning_rate": 3.956043956043956e-05,
61
+ "loss": 0.6545,
62
+ "mean_token_accuracy": 0.8425032556056976,
63
+ "num_tokens": 7567565.0,
64
+ "step": 30
65
+ },
66
+ {
67
+ "epoch": 2.0588235294117645,
68
+ "grad_norm": 0.4890639887000688,
69
+ "learning_rate": 3.6813186813186815e-05,
70
+ "loss": 0.6918,
71
+ "mean_token_accuracy": 0.8333606243133544,
72
+ "num_tokens": 8844929.0,
73
+ "step": 35
74
+ },
75
+ {
76
+ "epoch": 2.3529411764705883,
77
+ "grad_norm": 0.49328824852791164,
78
+ "learning_rate": 3.406593406593407e-05,
79
+ "loss": 0.5679,
80
+ "mean_token_accuracy": 0.861074560880661,
81
+ "num_tokens": 10134115.0,
82
+ "step": 40
83
+ },
84
+ {
85
+ "epoch": 2.6470588235294117,
86
+ "grad_norm": 0.4698134986650175,
87
+ "learning_rate": 3.131868131868132e-05,
88
+ "loss": 0.5474,
89
+ "mean_token_accuracy": 0.8665568113327027,
90
+ "num_tokens": 11370866.0,
91
+ "step": 45
92
+ },
93
+ {
94
+ "epoch": 2.9411764705882355,
95
+ "grad_norm": 0.37185312666387604,
96
+ "learning_rate": 2.857142857142857e-05,
97
+ "loss": 0.4938,
98
+ "mean_token_accuracy": 0.8755107343196868,
99
+ "num_tokens": 12624430.0,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 3.235294117647059,
104
+ "grad_norm": 0.4634355315355426,
105
+ "learning_rate": 2.582417582417583e-05,
106
+ "loss": 0.447,
107
+ "mean_token_accuracy": 0.889778733253479,
108
+ "num_tokens": 13909265.0,
109
+ "step": 55
110
+ },
111
+ {
112
+ "epoch": 3.5294117647058822,
113
+ "grad_norm": 0.5738029325235413,
114
+ "learning_rate": 2.307692307692308e-05,
115
+ "loss": 0.3707,
116
+ "mean_token_accuracy": 0.9037276983261109,
117
+ "num_tokens": 15169754.0,
118
+ "step": 60
119
+ },
120
+ {
121
+ "epoch": 3.8235294117647056,
122
+ "grad_norm": 0.44295053306971394,
123
+ "learning_rate": 2.032967032967033e-05,
124
+ "loss": 0.4328,
125
+ "mean_token_accuracy": 0.8942916512489318,
126
+ "num_tokens": 16426375.0,
127
+ "step": 65
128
+ },
129
+ {
130
+ "epoch": 4.117647058823529,
131
+ "grad_norm": 0.48600735056350475,
132
+ "learning_rate": 1.7582417582417584e-05,
133
+ "loss": 0.4355,
134
+ "mean_token_accuracy": 0.8996923744678498,
135
+ "num_tokens": 17685022.0,
136
+ "step": 70
137
+ },
138
+ {
139
+ "epoch": 4.411764705882353,
140
+ "grad_norm": 0.6270999510091785,
141
+ "learning_rate": 1.4835164835164836e-05,
142
+ "loss": 0.3213,
143
+ "mean_token_accuracy": 0.9201981544494628,
144
+ "num_tokens": 18972948.0,
145
+ "step": 75
146
+ },
147
+ {
148
+ "epoch": 4.705882352941177,
149
+ "grad_norm": 0.5582166829408877,
150
+ "learning_rate": 1.2087912087912089e-05,
151
+ "loss": 0.3534,
152
+ "mean_token_accuracy": 0.9134442567825317,
153
+ "num_tokens": 20241749.0,
154
+ "step": 80
155
+ },
156
+ {
157
+ "epoch": 5.0,
158
+ "grad_norm": 0.44013642641683465,
159
+ "learning_rate": 9.340659340659341e-06,
160
+ "loss": 0.2391,
161
+ "mean_token_accuracy": 0.9390455543994903,
162
+ "num_tokens": 21475135.0,
163
+ "step": 85
164
+ },
165
+ {
166
+ "epoch": 5.294117647058823,
167
+ "grad_norm": 0.3728640621917392,
168
+ "learning_rate": 6.5934065934065935e-06,
169
+ "loss": 0.3093,
170
+ "mean_token_accuracy": 0.9262847900390625,
171
+ "num_tokens": 22722522.0,
172
+ "step": 90
173
+ },
174
+ {
175
+ "epoch": 5.588235294117647,
176
+ "grad_norm": 0.37920869196649243,
177
+ "learning_rate": 3.846153846153847e-06,
178
+ "loss": 0.2553,
179
+ "mean_token_accuracy": 0.9366285502910614,
180
+ "num_tokens": 23999790.0,
181
+ "step": 95
182
+ },
183
+ {
184
+ "epoch": 5.882352941176471,
185
+ "grad_norm": 0.3560598736684562,
186
+ "learning_rate": 1.098901098901099e-06,
187
+ "loss": 0.2146,
188
+ "mean_token_accuracy": 0.94760302901268,
189
+ "num_tokens": 25261256.0,
190
+ "step": 100
191
+ },
192
+ {
193
+ "epoch": 6.0,
194
+ "mean_token_accuracy": 0.9418431520462036,
195
+ "num_tokens": 25768100.0,
196
+ "step": 102,
197
+ "total_flos": 38524314714112.0,
198
+ "train_loss": 0.5417864180955232,
199
+ "train_runtime": 489.9093,
200
+ "train_samples_per_second": 6.601,
201
+ "train_steps_per_second": 0.208
202
+ }
203
+ ],
204
+ "logging_steps": 5,
205
+ "max_steps": 102,
206
+ "num_input_tokens_seen": 0,
207
+ "num_train_epochs": 6,
208
+ "save_steps": 500,
209
+ "stateful_callbacks": {
210
+ "TrainerControl": {
211
+ "args": {
212
+ "should_epoch_stop": false,
213
+ "should_evaluate": false,
214
+ "should_log": false,
215
+ "should_save": true,
216
+ "should_training_stop": true
217
+ },
218
+ "attributes": {}
219
+ }
220
+ },
221
+ "total_flos": 38524314714112.0,
222
+ "train_batch_size": 2,
223
+ "trial_name": null,
224
+ "trial_params": null
225
+ }