--- library_name: transformers tags: - dhivehi-tts license: mit datasets: - alakxender/voice-synthetic language: - dv base_model: - facebook/mms-tts-div --- # Divehi TTS – Female Voice (VITS-based) This is a fine-tuned VITS (Variational Inference with adversarial learning for end-to-end Text-to-Speech) model for Divehi speech synthesis. The model produces Female voice audio from Thaana-scripted Divehi text. Fine-tuned from Meta’s MMS-TTS architecture using a curated dataset of synthetic Divehi speech. ## Model Details | Field | Value | |----------------------|-------------------------------------------------| | **Model ID** | `alakxender/mms-tts-div-ft-spk01-f01` | | **Base Architecture**| MMS-TTS (VITS) | | **Language** | Divehi (dv) | | **Voice** | Female | | **Sampling Rate** | 16 kHz | | **Tokenizer** | VITSTokenizer | | **Inference Engine** | Transformers (🤗 Hugging Face) | ## Usage ```python from transformers import VitsModel, VitsTokenizer import torchaudio tokenizer = VitsTokenizer.from_pretrained("alakxender/mms-tts-div-ft-spk01-f01") model = VitsModel.from_pretrained("alakxender/mms-tts-div-ft-spk01-f01") text = "މޫސުން ވަރަށް ގޯސްވެ، ފުވައްމުލަކުން ފެށިގެން އައްޑުއަށް އޮރެންޖް އެލާޓް ނެރެފި" inputs = tokenizer(text, return_tensors="pt") waveform = model.generate(**inputs).waveform[0] torchaudio.save("output.wav", waveform.unsqueeze(0), 16000) ``` ## Evaluation Summary - **Model**: `alakxender/mms-tts-div-ft-spk01-f01` - **Evaluated Samples**: 3 - **Avg Estimated MOS (UTMOS)**: `3.198` ```json { "5": "Excellent (very natural)", "4": "Good (mostly natural)", "3": "Fair (some robotic quality)", "2": "Poor (noticeably unnatural)", "1": "Bad (unintelligible or very synthetic)" } ``` - **Artifacts**: - 🎵 Audio: `outputs/audio/` - 📊 Spectrograms: `outputs/spectrograms/` - 📄 Report: `outputs/report.txt` - 📈 MOS Scores: `outputs/mos_scores.txt` ## Acknowledgements - [Meta MMS-TTS](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) - [Tarepan's SpeechMOS](https://github.com/Tarepan/SpeechMOS) - [Hugging Face 🤗 Transformers](https://huggingface.co/transformers/)