---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:26678
- loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: '8'
sentences:
- title
- mpaa_rating
- G
- '1'
- source_sentence: For Colored Girls
sentences:
- title
- It's Kind of a Funny Story
- mpaa_rating
- PG
- source_sentence: D
sentences:
- Foreign Language
- genre
- C
- title
- source_sentence: Jackass 3-D
sentences:
- director
- title
- Robert Rodriguez
- Megamind
- source_sentence: Adam & Steve (2005)
sentences:
- Comedy
- genre
- Lilies of the Field (1963)
- title
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy
value: 0.998785674571991
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.891865074634552
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.7375457882881165
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.8950619101524353
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.7412229180335999
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
- **Maximum Sequence Length:** 32 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-movie-wo-ref-gpt-4o-mini")
# Run inference
sentences = [
'Adam & Steve (2005)',
'Lilies of the Field (1963)',
'Comedy',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.8919** |
| silhouette_euclidean | 0.7375 |
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9988** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.8951** |
| silhouette_euclidean | 0.7412 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 26,678 training samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, neg_attr_name
, and website_id
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name | website_id |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | string | string | string | string | int |
| details |
10/27/2005
| ---
| Richard Linklater
| mpaa_rating
| director
| 4
|
| Red
| Nowhere Boy
| Thriller
| title
| genre
| 6
|
| PG
| R
| Lars von Trier
| mpaa_rating
| director
| 3
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 2,965 evaluation samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, neg_attr_name
, and website_id
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name | website_id |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | string | string | string | string | int |
| details | Tangled
| Nowhere Boy
| G
| title
| mpaa_rating
| 6
|
| B
| B
| Hayao Miyazaki
| title
| director
| 2
|
| R
| 1 hour 34 minutes
| Martin Scorsese
| mpaa_rating
| director
| 4
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
#### All Hyperparameters