albertus-sussex commited on
Commit
3017634
·
verified ·
1 Parent(s): 24758f3

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:835
8
+ - loss:AttributeTripletLoss
9
+ base_model: Alibaba-NLP/gte-base-en-v1.5
10
+ widget:
11
+ - source_sentence: 05/22/2000
12
+ sentences:
13
+ - publication_date
14
+ - May 10, 2010
15
+ - Stephen Colbert
16
+ - author
17
+ - source_sentence: '9780060090579'
18
+ sentences:
19
+ - publisher
20
+ - '9780224086356'
21
+ - Harpercollins
22
+ - isbn_13
23
+ - source_sentence: '9780007257775'
24
+ sentences:
25
+ - The Ultimate Gift
26
+ - isbn_13
27
+ - title
28
+ - ': 9781582435671'
29
+ - source_sentence: '1999'
30
+ sentences:
31
+ - author
32
+ - Michael Koryta
33
+ - April 27, 2010
34
+ - publication_date
35
+ - source_sentence: Dark River
36
+ sentences:
37
+ - publication_date
38
+ - Crosscurrent
39
+ - title
40
+ - '1999'
41
+ pipeline_tag: sentence-similarity
42
+ library_name: sentence-transformers
43
+ metrics:
44
+ - cosine_accuracy
45
+ - silhouette_cosine
46
+ - silhouette_euclidean
47
+ model-index:
48
+ - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
49
+ results:
50
+ - task:
51
+ type: triplet
52
+ name: Triplet
53
+ dataset:
54
+ name: Unknown
55
+ type: unknown
56
+ metrics:
57
+ - type: cosine_accuracy
58
+ value: 0.9892473220825195
59
+ name: Cosine Accuracy
60
+ - type: cosine_accuracy
61
+ value: 1.0
62
+ name: Cosine Accuracy
63
+ - task:
64
+ type: silhouette
65
+ name: Silhouette
66
+ dataset:
67
+ name: Unknown
68
+ type: unknown
69
+ metrics:
70
+ - type: silhouette_cosine
71
+ value: 0.759297251701355
72
+ name: Silhouette Cosine
73
+ - type: silhouette_euclidean
74
+ value: 0.581291913986206
75
+ name: Silhouette Euclidean
76
+ - type: silhouette_cosine
77
+ value: 0.733453094959259
78
+ name: Silhouette Cosine
79
+ - type: silhouette_euclidean
80
+ value: 0.5556866526603699
81
+ name: Silhouette Euclidean
82
+ ---
83
+
84
+ # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
85
+
86
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
87
+
88
+ ## Model Details
89
+
90
+ ### Model Description
91
+ - **Model Type:** Sentence Transformer
92
+ - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f -->
93
+ - **Maximum Sequence Length:** 8192 tokens
94
+ - **Output Dimensionality:** 768 dimensions
95
+ - **Similarity Function:** Cosine Similarity
96
+ <!-- - **Training Dataset:** Unknown -->
97
+ <!-- - **Language:** Unknown -->
98
+ <!-- - **License:** Unknown -->
99
+
100
+ ### Model Sources
101
+
102
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
103
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
104
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
105
+
106
+ ### Full Model Architecture
107
+
108
+ ```
109
+ SentenceTransformer(
110
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
111
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
112
+ )
113
+ ```
114
+
115
+ ## Usage
116
+
117
+ ### Direct Usage (Sentence Transformers)
118
+
119
+ First install the Sentence Transformers library:
120
+
121
+ ```bash
122
+ pip install -U sentence-transformers
123
+ ```
124
+
125
+ Then you can load this model and run inference.
126
+ ```python
127
+ from sentence_transformers import SentenceTransformer
128
+
129
+ # Download from the 🤗 Hub
130
+ model = SentenceTransformer("albertus-sussex/veriscrape-test-1")
131
+ # Run inference
132
+ sentences = [
133
+ 'Dark River',
134
+ 'Crosscurrent',
135
+ '1999',
136
+ ]
137
+ embeddings = model.encode(sentences)
138
+ print(embeddings.shape)
139
+ # [3, 768]
140
+
141
+ # Get the similarity scores for the embeddings
142
+ similarities = model.similarity(embeddings, embeddings)
143
+ print(similarities.shape)
144
+ # [3, 3]
145
+ ```
146
+
147
+ <!--
148
+ ### Direct Usage (Transformers)
149
+
150
+ <details><summary>Click to see the direct usage in Transformers</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Downstream Usage (Sentence Transformers)
157
+
158
+ You can finetune this model on your own dataset.
159
+
160
+ <details><summary>Click to expand</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Out-of-Scope Use
167
+
168
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
169
+ -->
170
+
171
+ ## Evaluation
172
+
173
+ ### Metrics
174
+
175
+ #### Triplet
176
+
177
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
178
+
179
+ | Metric | Value |
180
+ |:--------------------|:-----------|
181
+ | **cosine_accuracy** | **0.9892** |
182
+
183
+ #### Silhouette
184
+
185
+ * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code>
186
+
187
+ | Metric | Value |
188
+ |:----------------------|:-----------|
189
+ | **silhouette_cosine** | **0.7593** |
190
+ | silhouette_euclidean | 0.5813 |
191
+
192
+ #### Triplet
193
+
194
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
195
+
196
+ | Metric | Value |
197
+ |:--------------------|:--------|
198
+ | **cosine_accuracy** | **1.0** |
199
+
200
+ #### Silhouette
201
+
202
+ * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code>
203
+
204
+ | Metric | Value |
205
+ |:----------------------|:-----------|
206
+ | **silhouette_cosine** | **0.7335** |
207
+ | silhouette_euclidean | 0.5557 |
208
+
209
+ <!--
210
+ ## Bias, Risks and Limitations
211
+
212
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
213
+ -->
214
+
215
+ <!--
216
+ ### Recommendations
217
+
218
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
219
+ -->
220
+
221
+ ## Training Details
222
+
223
+ ### Training Dataset
224
+
225
+ #### Unnamed Dataset
226
+
227
+ * Size: 835 training samples
228
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code>
229
+ * Approximate statistics based on the first 835 samples:
230
+ | | anchor | positive | negative | pos_attr_name | neg_attr_name |
231
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
232
+ | type | string | string | string | string | string |
233
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.8 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.71 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.45 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.77 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.8 tokens</li><li>max: 5 tokens</li></ul> |
234
+ * Samples:
235
+ | anchor | positive | negative | pos_attr_name | neg_attr_name |
236
+ |:-------------------------------------------|:-------------------------------|:----------------------------|:------------------------------|:------------------------------|
237
+ | <code>: May 2010</code> | <code>February 01, 2001</code> | <code>: HarperTrophy</code> | <code>publication_date</code> | <code>publisher</code> |
238
+ | <code>Favorite Father Brown Stories</code> | <code>Double Cross</code> | <code>April 27, 2010</code> | <code>title</code> | <code>publication_date</code> |
239
+ | <code>Restoration of Men</code> | <code>Mussolini's Rome</code> | <code>2006</code> | <code>title</code> | <code>publication_date</code> |
240
+ * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters:
241
+ ```json
242
+ {
243
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
244
+ "triplet_margin": 5
245
+ }
246
+ ```
247
+
248
+ ### Evaluation Dataset
249
+
250
+ #### Unnamed Dataset
251
+
252
+ * Size: 93 evaluation samples
253
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code>
254
+ * Approximate statistics based on the first 93 samples:
255
+ | | anchor | positive | negative | pos_attr_name | neg_attr_name |
256
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
257
+ | type | string | string | string | string | string |
258
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.84 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.92 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.16 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.77 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.86 tokens</li><li>max: 5 tokens</li></ul> |
259
+ * Samples:
260
+ | anchor | positive | negative | pos_attr_name | neg_attr_name |
261
+ |:-------------------------------------------------|:--------------------------------------------|:----------------------------------------------------------|:-----------------------|:-----------------------|
262
+ | <code>9780224080231</code> | <code>: 9781601251503</code> | <code>The Neighbor: A Detective D. D. Warren Novel</code> | <code>isbn_13</code> | <code>title</code> |
263
+ | <code>Globe Fearon Educational Publishing</code> | <code>HarperCollins Children's Books</code> | <code>The Mental Floss History of the World</code> | <code>publisher</code> | <code>title</code> |
264
+ | <code>9780060090579</code> | <code>9780224086356</code> | <code>Harpercollins</code> | <code>isbn_13</code> | <code>publisher</code> |
265
+ * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters:
266
+ ```json
267
+ {
268
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
269
+ "triplet_margin": 5
270
+ }
271
+ ```
272
+
273
+ ### Training Hyperparameters
274
+ #### Non-Default Hyperparameters
275
+
276
+ - `eval_strategy`: epoch
277
+ - `per_device_train_batch_size`: 16
278
+ - `per_device_eval_batch_size`: 16
279
+ - `learning_rate`: 2e-05
280
+ - `num_train_epochs`: 2
281
+ - `warmup_ratio`: 0.1
282
+
283
+ #### All Hyperparameters
284
+ <details><summary>Click to expand</summary>
285
+
286
+ - `overwrite_output_dir`: False
287
+ - `do_predict`: False
288
+ - `eval_strategy`: epoch
289
+ - `prediction_loss_only`: True
290
+ - `per_device_train_batch_size`: 16
291
+ - `per_device_eval_batch_size`: 16
292
+ - `per_gpu_train_batch_size`: None
293
+ - `per_gpu_eval_batch_size`: None
294
+ - `gradient_accumulation_steps`: 1
295
+ - `eval_accumulation_steps`: None
296
+ - `torch_empty_cache_steps`: None
297
+ - `learning_rate`: 2e-05
298
+ - `weight_decay`: 0.0
299
+ - `adam_beta1`: 0.9
300
+ - `adam_beta2`: 0.999
301
+ - `adam_epsilon`: 1e-08
302
+ - `max_grad_norm`: 1.0
303
+ - `num_train_epochs`: 2
304
+ - `max_steps`: -1
305
+ - `lr_scheduler_type`: linear
306
+ - `lr_scheduler_kwargs`: {}
307
+ - `warmup_ratio`: 0.1
308
+ - `warmup_steps`: 0
309
+ - `log_level`: passive
310
+ - `log_level_replica`: warning
311
+ - `log_on_each_node`: True
312
+ - `logging_nan_inf_filter`: True
313
+ - `save_safetensors`: True
314
+ - `save_on_each_node`: False
315
+ - `save_only_model`: False
316
+ - `restore_callback_states_from_checkpoint`: False
317
+ - `no_cuda`: False
318
+ - `use_cpu`: False
319
+ - `use_mps_device`: False
320
+ - `seed`: 42
321
+ - `data_seed`: None
322
+ - `jit_mode_eval`: False
323
+ - `use_ipex`: False
324
+ - `bf16`: False
325
+ - `fp16`: False
326
+ - `fp16_opt_level`: O1
327
+ - `half_precision_backend`: auto
328
+ - `bf16_full_eval`: False
329
+ - `fp16_full_eval`: False
330
+ - `tf32`: None
331
+ - `local_rank`: 0
332
+ - `ddp_backend`: None
333
+ - `tpu_num_cores`: None
334
+ - `tpu_metrics_debug`: False
335
+ - `debug`: []
336
+ - `dataloader_drop_last`: False
337
+ - `dataloader_num_workers`: 0
338
+ - `dataloader_prefetch_factor`: None
339
+ - `past_index`: -1
340
+ - `disable_tqdm`: False
341
+ - `remove_unused_columns`: True
342
+ - `label_names`: None
343
+ - `load_best_model_at_end`: False
344
+ - `ignore_data_skip`: False
345
+ - `fsdp`: []
346
+ - `fsdp_min_num_params`: 0
347
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
348
+ - `fsdp_transformer_layer_cls_to_wrap`: None
349
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
350
+ - `deepspeed`: None
351
+ - `label_smoothing_factor`: 0.0
352
+ - `optim`: adamw_torch
353
+ - `optim_args`: None
354
+ - `adafactor`: False
355
+ - `group_by_length`: False
356
+ - `length_column_name`: length
357
+ - `ddp_find_unused_parameters`: None
358
+ - `ddp_bucket_cap_mb`: None
359
+ - `ddp_broadcast_buffers`: False
360
+ - `dataloader_pin_memory`: True
361
+ - `dataloader_persistent_workers`: False
362
+ - `skip_memory_metrics`: True
363
+ - `use_legacy_prediction_loop`: False
364
+ - `push_to_hub`: False
365
+ - `resume_from_checkpoint`: None
366
+ - `hub_model_id`: None
367
+ - `hub_strategy`: every_save
368
+ - `hub_private_repo`: False
369
+ - `hub_always_push`: False
370
+ - `gradient_checkpointing`: False
371
+ - `gradient_checkpointing_kwargs`: None
372
+ - `include_inputs_for_metrics`: False
373
+ - `eval_do_concat_batches`: True
374
+ - `fp16_backend`: auto
375
+ - `push_to_hub_model_id`: None
376
+ - `push_to_hub_organization`: None
377
+ - `mp_parameters`:
378
+ - `auto_find_batch_size`: False
379
+ - `full_determinism`: False
380
+ - `torchdynamo`: None
381
+ - `ray_scope`: last
382
+ - `ddp_timeout`: 1800
383
+ - `torch_compile`: False
384
+ - `torch_compile_backend`: None
385
+ - `torch_compile_mode`: None
386
+ - `dispatch_batches`: None
387
+ - `split_batches`: None
388
+ - `include_tokens_per_second`: False
389
+ - `include_num_input_tokens_seen`: False
390
+ - `neftune_noise_alpha`: None
391
+ - `optim_target_modules`: None
392
+ - `batch_eval_metrics`: False
393
+ - `eval_on_start`: False
394
+ - `use_liger_kernel`: False
395
+ - `eval_use_gather_object`: False
396
+ - `prompts`: None
397
+ - `batch_sampler`: batch_sampler
398
+ - `multi_dataset_batch_sampler`: proportional
399
+
400
+ </details>
401
+
402
+ ### Training Logs
403
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine |
404
+ |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:|
405
+ | -1 | -1 | - | - | 0.5161 | 0.2060 |
406
+ | 1.0 | 53 | 1.7581 | 0.1599 | 0.9892 | 0.7064 |
407
+ | 2.0 | 106 | 0.1834 | 0.1617 | 0.9892 | 0.7593 |
408
+ | -1 | -1 | - | - | 1.0 | 0.7335 |
409
+
410
+
411
+ ### Framework Versions
412
+ - Python: 3.10.16
413
+ - Sentence Transformers: 3.4.1
414
+ - Transformers: 4.45.2
415
+ - PyTorch: 2.5.1
416
+ - Accelerate: 1.5.1
417
+ - Datasets: 3.1.0
418
+ - Tokenizers: 0.20.3
419
+
420
+ ## Citation
421
+
422
+ ### BibTeX
423
+
424
+ #### Sentence Transformers
425
+ ```bibtex
426
+ @inproceedings{reimers-2019-sentence-bert,
427
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
428
+ author = "Reimers, Nils and Gurevych, Iryna",
429
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
430
+ month = "11",
431
+ year = "2019",
432
+ publisher = "Association for Computational Linguistics",
433
+ url = "https://arxiv.org/abs/1908.10084",
434
+ }
435
+ ```
436
+
437
+ #### AttributeTripletLoss
438
+ ```bibtex
439
+ @misc{hermans2017defense,
440
+ title={In Defense of the Triplet Loss for Person Re-Identification},
441
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
442
+ year={2017},
443
+ eprint={1703.07737},
444
+ archivePrefix={arXiv},
445
+ primaryClass={cs.CV}
446
+ }
447
+ ```
448
+
449
+ <!--
450
+ ## Glossary
451
+
452
+ *Clearly define terms in order to be accessible across audiences.*
453
+ -->
454
+
455
+ <!--
456
+ ## Model Card Authors
457
+
458
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
459
+ -->
460
+
461
+ <!--
462
+ ## Model Card Contact
463
+
464
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
465
+ -->
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-base-en-v1.5",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 768,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_norm_type": "layer_norm",
24
+ "logn_attention_clip1": false,
25
+ "logn_attention_scale": false,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "new",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pack_qkv": true,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "rope",
33
+ "rope_scaling": {
34
+ "factor": 2.0,
35
+ "type": "ntk"
36
+ },
37
+ "rope_theta": 500000,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.45.2",
40
+ "type_vocab_size": 0,
41
+ "unpad_inputs": false,
42
+ "use_memory_efficient_attention": false,
43
+ "vocab_size": 30528
44
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74c3900fc3861a5a886464aa63c64295cce16eb6d888faebcbe335b68fc7b977
3
+ size 547119128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 8192,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff