---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:835
- loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: 05/22/2000
sentences:
- publication_date
- May 10, 2010
- Stephen Colbert
- author
- source_sentence: '9780060090579'
sentences:
- publisher
- '9780224086356'
- Harpercollins
- isbn_13
- source_sentence: '9780007257775'
sentences:
- The Ultimate Gift
- isbn_13
- title
- ': 9781582435671'
- source_sentence: '1999'
sentences:
- author
- Michael Koryta
- April 27, 2010
- publication_date
- source_sentence: Dark River
sentences:
- publication_date
- Crosscurrent
- title
- '1999'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9892473220825195
name: Cosine Accuracy
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.759297251701355
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.581291913986206
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.733453094959259
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.5556866526603699
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-test-1")
# Run inference
sentences = [
'Dark River',
'Crosscurrent',
'1999',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9892** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.7593** |
| silhouette_euclidean | 0.5813 |
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.7335** |
| silhouette_euclidean | 0.5557 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 835 training samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 835 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details |
: May 2010
| February 01, 2001
| : HarperTrophy
| publication_date
| publisher
|
| Favorite Father Brown Stories
| Double Cross
| April 27, 2010
| title
| publication_date
|
| Restoration of Men
| Mussolini's Rome
| 2006
| title
| publication_date
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 93 evaluation samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 93 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | 9780224080231
| : 9781601251503
| The Neighbor: A Detective D. D. Warren Novel
| isbn_13
| title
|
| Globe Fearon Educational Publishing
| HarperCollins Children's Books
| The Mental Floss History of the World
| publisher
| title
|
| 9780060090579
| 9780224086356
| Harpercollins
| isbn_13
| publisher
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
#### All Hyperparameters