alea-institute commited on
Commit
aed9a39
·
verified ·
1 Parent(s): 12a916a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - es
5
+ - fr
6
+ - de
7
+ library_name: tokenizers
8
+ license: cc-by-4.0
9
+ tags:
10
+ - kl3m
11
+ - kl3m-003
12
+ - alea
13
+ - legal
14
+ - financial
15
+ date: '2024-11-07T00:00:00.000Z'
16
+ ---
17
+
18
+ # kl3m-004-128k-cased tokenizer
19
+
20
+ **NOTE**: This is the same vocabulary as kl3m-004-128k-cased, but packaged within a `RobertaProcessing` `post_processor` class
21
+ to provide special token handling without loading a custom tokenizer class.
22
+
23
+ The `kl3m-004-128k-cased` **case-sensitive** tokenizer is a domain-specific tokenizer trained on a stratified sample of nearly 4M
24
+ documents across general, legal, and financial domains from the `kl3m-data` project, including American English,
25
+ British English, Spanish, German, French, Italian, and other common EU languages.
26
+
27
+ This tokenizer is being used for the next generation of KL3M embedding and generative models.
28
+
29
+ Please see `kl3m-001-32k` and `kl3m-003-64k` for the first iteration of our research on domain-specific tokenization.
30
+
31
+ Note that we are providing both case and cased versions of the 128K tokenizer, unlike prior tokenizers, as this was
32
+ required to achieve SotA in-domain performance for embedding models on legal and financial text.
33
+
34
+ ## Model Details
35
+
36
+
37
+ ### Summary
38
+
39
+ - **Vocabulary**: 131,072
40
+ - **Tokenizer type:** BPE
41
+ - **Special token support:** Both causal and masked language modeling
42
+ - **Language(s) (NLP):** Primarily English, Spanish, German, French, with a small percentage of other EU languages.
43
+ - **Data Sources**: See [`kl3m-data`](https://github.com/alea-institute/kl3m-data) repository.
44
+ - **Developed by:** [ALEA Institute](https://aleainstitute.ai).
45
+ - **License:** [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/)
46
+
47
+
48
+ ### Model Description
49
+
50
+ The `kl3m-004-128k-cased` tokenizer is a domain-specific tokenizer trained on ~1.5T tokens of financial and legal text from primarily-English sources.
51
+
52
+ This tokenizer is notable for a number of reasons:
53
+
54
+ #### Domain Specific
55
+
56
+ As part of our research on more efficient SLM training for the legal and financial domain, we
57
+ trained a domain-specific tokenizer on a large corpus of financial and legal text. This tokenizer
58
+ has not, for example, seen any common general pretrain sources like Wikipedia or Common Crawl.
59
+
60
+ #### Large Added Token Set
61
+
62
+ As part of our research on efficient and reliable extraction and generation, we inserted
63
+ a large numer of deterministic "whole" tokens into the tokenizer, such as HTML tags
64
+ like `<span`, common Markdown elements like `#` and `##`, and legal enumerations like `(a)`.
65
+
66
+ **Note that the kl3m-004-128k-cased tokenizer has added a number of additional citation formats that were not
67
+ included in the kl3m-001-32k tokenizer.** These were primarily sourced from empirical data and
68
+ the [Free Law Project's reporters-db](https://raw.githubusercontent.com/freelawproject/reporters-db/main/reporters_db/data/),
69
+ which were added to the tokenizer to improve model behavior related to legal citations.
70
+
71
+ See the `get_custom_tokens` method in `kl3m_embeddings/training/kl3m_004/train_tokenizer.py` for
72
+ more details:
73
+
74
+ ```python
75
+ def get_custom_tokens(
76
+ include_whitespace: bool = True,
77
+ include_markdown: bool = True,
78
+ include_html: bool = True,
79
+ include_json: bool = True,
80
+ include_xml: bool = True,
81
+ include_years: bool = True,
82
+ include_citations: bool = True,
83
+ lowercase: bool = False,
84
+ ) -> list[str]:
85
+ ```
86
+
87
+ #### Space Preservation
88
+
89
+ Unlike `kl3m-001-32k`, we *do not* retain the space character as a token. This was done after adding additional legal
90
+ citation tokens to the vocabulary, which reduced the number of issues related to space tokenization in legal text. This
91
+ means that the `kl3m-004-128k-cased` tokenizer uses substantially fewer tokens than `kl3m-001-32k` for most text.
92
+
93
+ #### Special Tokens for both Embedding and Generative Models
94
+
95
+ For both training and inference efficiency, we intended this tokenizer vocabulary to be
96
+ usable for both embedding and generative models. As such, we included special tokens
97
+ suitable for both causal and masked language modeling tasks.
98
+
99
+ * `<|start|>`: `0`
100
+ * `<|end|>`: `1`
101
+ * `<|pad|>`: `2`
102
+ * `<|unk|>`: `3`
103
+ * `<|sep|>`: `4`
104
+ * `<|cls|>`: `5`
105
+ * `<|mask|>`: `6`
106
+
107
+ We also added a number of chat and instruction tokens that were not included in `kl3m-001-32k`, including:
108
+
109
+ * `<|system|>`: `7`
110
+ * `</|system|>`: `8`
111
+ * `<|user|>`: `9`
112
+ * `</|user|>`: `10`
113
+ * `<|instruction|>`: `11`
114
+ * `</|instruction|>`: `12`
115
+
116
+ These tokens are identical to those used in the `kl3m-003-64k` tokenizer.
117
+
118
+ ### Replication
119
+
120
+ The entire data collection and preprocesing pipeline is being made available, along with
121
+ training data, as part of the [ALEA Institute](https://aleainstitute.ai) [KL3M project](https://aleainstitute.ai/work/kl3m/).
122
+
123
+ The source code to used to train the tokenizer is available on GitHub at:
124
+ [https://github.com/alea-institute/kl3m-embedding-research](https://github.com/alea-institute/kl3m-embedding-research)
125
+
126
+ The data pipeline will be available on GitHub and S3 in the near future.
127
+
128
+ ## Uses
129
+
130
+ This tokenizer is intended to be used for English, Spanish, German, or French language text in professional contexts
131
+ such as legal and financial documents.
132
+
133
+ ### Recommendations
134
+
135
+ In general, the `kl3m-004-128k-cased` tokenizer is recommended over the original `kl3m-001-32k` tokenizer.
136
+
137
+ ```text
138
+ Original text: The Comptroller of the Currency shall have the same authority with respect to functions transferred to the Comptroller of the Currency under the Enhancing Financial Institution Safety and Soundness Act of 2010 as was vested in the Director of the Office of Thrift Supervision on the transfer date, as defined in section 311 of that Act [12 U.S.C. 5411].
139
+
140
+ kl3m-003-64
141
+ -----------
142
+ Size: 67
143
+ Tokens: ['The', ' Comptroller', ' of', ' the', ' Currency', ' shall', ' have', ' the', ' same', ' authority', ' with', ' respect', ' to', ' functions', ' transferred', ' to', ' the', ' Comptroller', ' of', ' the', ' Currency', ' under', ' the', ' Enh', 'ancing', ' Financial', ' Institution', ' Safety', ' and', ' ', 'Sound', 'ness', ' Act', ' of', ' 2010', ' as', ' was', ' vested', ' in', ' the', ' Director', ' of', ' the', ' Office', ' of', ' Thrift', ' Supervision', ' on', ' the', ' transfer', ' date', ',', ' as', ' defined', ' in', ' section', ' 311', ' of', ' that', ' Act', ' [', '12', ' ', 'U.S.C.', ' 54', '11', '].']
144
+ IDs: [671, 13273, 295, 281, 25922, 735, 704, 281, 1913, 2451, 440, 1894, 312, 5860, 7264, 312, 281, 13273, 295, 281, 25922, 621, 281, 18926, 4406, 3195, 24448, 5617, 310, 233, 63589, 2130, 854, 295, 1611, 398, 725, 11978, 300, 281, 2827, 295, 281, 1767, 295, 44029, 37141, 395, 281, 3696, 1548, 24, 398, 3011, 300, 782, 6590, 295, 407, 854, 1327, 524, 233, 63761, 3789, 547, 8578]
145
+
146
+
147
+ kl3m-004-128k-cased
148
+ ---------------------
149
+ Size: 65
150
+ Tokens: ['The', ' Comptroller', ' of', ' the', ' Currency', ' shall', ' have', ' the', ' same', ' authority', ' with', ' respect', ' to', ' functions', ' transferred', ' to', ' the', ' Comptroller', ' of', ' the', ' Currency', ' under', ' the', ' Enhancing', ' Financial', ' Institution', ' Safety', ' and', ' Sound', 'ness', ' Act', ' of', ' 2010', ' as', ' was', ' vested', ' in', ' the', ' Director', ' of', ' the', ' Office', ' of', ' Thrift', ' Supervision', ' on', ' the', ' transfer', ' date', ',', ' as', ' defined', ' in', ' section', ' 311', ' of', ' that', ' Act', ' [', '12', ' ', 'U.S.C.', ' 54', '11', '].']
151
+ IDs: [908, 21512, 290, 280, 8927, 462, 635, 280, 1552, 1788, 405, 893, 305, 5135, 4877, 305, 280, 21512, 290, 280, 8927, 563, 280, 62796, 2870, 15216, 4687, 310, 24831, 1486, 761, 290, 2446, 377, 637, 6341, 301, 280, 3422, 290, 280, 2379, 290, 36886, 29212, 401, 280, 1918, 819, 24, 377, 2024, 301, 984, 14706, 290, 388, 761, 747, 633, 233, 129009, 4090, 583, 4845]
152
+ ```
153
+
154
+ ## How to Get Started with the Model
155
+
156
+ Use the code below to get started with the model.
157
+
158
+ ```
159
+ from tokenizers import Tokenizer
160
+
161
+ tokenizer = Tokenizer.from_pretrained('alea-institute/kl3m-004-128k-cased')
162
+ ```
163
+
164
+ ## Citation
165
+
166
+ Tokenizer and dataset publications are pending.
167
+
168
+ ## Contact
169
+
170
+ For any questions, please contact [ALEA Institute](https://aleainstitute.ai) at [[email protected]](mailto:[email protected]) or
171
+ create an issue on this repository or [GitHub](https://github.com/alea-institute/kl3m-embedding-research).
172
+
173
+ ![logo](https://aleainstitute.ai/images/alea-logo-ascii-1x1.png)
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|start|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<|cls|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "<|end|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<|mask|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<|pad|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "<|sep|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<|unk|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35558059f1dde0c4e14ac9f2052b203df5b53c98981e61bb76524cacd1b92ac4
3
+ size 11719815
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff