lbourdois commited on
Commit
eae03d8
·
verified ·
1 Parent(s): 104a4db

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +178 -164
README.md CHANGED
@@ -1,165 +1,179 @@
1
- ---
2
- library_name: peft
3
- license: other
4
- base_model: Qwen/Qwen2.5-3B
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 6891bd52-22bf-446d-ac98-6dd8ab2b199d
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-3B
23
- bf16: true
24
- chat_template: llama3
25
- data_processes: 16
26
- dataset_prepared_path: null
27
- datasets:
28
- - data_files:
29
- - e3f7343345b9b21f_train_data.json
30
- ds_type: json
31
- format: custom
32
- path: /workspace/input_data/e3f7343345b9b21f_train_data.json
33
- type:
34
- field_instruction: description
35
- field_output: code
36
- format: '{instruction}'
37
- no_input_format: '{instruction}'
38
- system_format: '{system}'
39
- system_prompt: ''
40
- debug: null
41
- deepspeed: null
42
- device_map: auto
43
- do_eval: true
44
- early_stopping_patience: 5
45
- eval_batch_size: 4
46
- eval_max_new_tokens: 128
47
- eval_steps: 50
48
- eval_table_size: null
49
- evals_per_epoch: null
50
- flash_attention: true
51
- fp16: false
52
- fsdp: null
53
- fsdp_config: null
54
- gradient_accumulation_steps: 4
55
- gradient_checkpointing: true
56
- group_by_length: true
57
- hub_model_id: aleegis09/6891bd52-22bf-446d-ac98-6dd8ab2b199d
58
- hub_repo: null
59
- hub_strategy: checkpoint
60
- hub_token: null
61
- learning_rate: 0.0001
62
- load_in_4bit: false
63
- load_in_8bit: false
64
- local_rank: null
65
- logging_steps: 1
66
- lora_alpha: 128
67
- lora_dropout: 0.05
68
- lora_fan_in_fan_out: null
69
- lora_model_dir: null
70
- lora_r: 64
71
- lora_target_linear: true
72
- lr_scheduler: cosine
73
- max_grad_norm: 1.0
74
- max_memory:
75
- 0: 75GB
76
- max_steps: 200
77
- micro_batch_size: 8
78
- mlflow_experiment_name: /tmp/e3f7343345b9b21f_train_data.json
79
- model_type: AutoModelForCausalLM
80
- num_epochs: 3
81
- optim_args:
82
- adam_beta1: 0.9
83
- adam_beta2: 0.95
84
- adam_epsilon: 1e-5
85
- optimizer: adamw_bnb_8bit
86
- output_dir: miner_id_24
87
- pad_to_sequence_len: true
88
- resume_from_checkpoint: null
89
- s2_attention: null
90
- sample_packing: false
91
- save_steps: 50
92
- saves_per_epoch: null
93
- sequence_len: 1024
94
- strict: false
95
- tf32: true
96
- tokenizer_type: AutoTokenizer
97
- train_on_inputs: false
98
- trust_remote_code: true
99
- val_set_size: 0.05
100
- wandb_entity: null
101
- wandb_mode: online
102
- wandb_name: db8f3cf6-8e27-4f7a-a1cc-9f92fa694ab2
103
- wandb_project: Gradients-On-Demand
104
- wandb_run: your_name
105
- wandb_runid: db8f3cf6-8e27-4f7a-a1cc-9f92fa694ab2
106
- warmup_steps: 10
107
- weight_decay: 0.0
108
- xformers_attention: null
109
-
110
- ```
111
-
112
- </details><br>
113
-
114
- # 6891bd52-22bf-446d-ac98-6dd8ab2b199d
115
-
116
- This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset.
117
- It achieves the following results on the evaluation set:
118
- - Loss: 0.5052
119
-
120
- ## Model description
121
-
122
- More information needed
123
-
124
- ## Intended uses & limitations
125
-
126
- More information needed
127
-
128
- ## Training and evaluation data
129
-
130
- More information needed
131
-
132
- ## Training procedure
133
-
134
- ### Training hyperparameters
135
-
136
- The following hyperparameters were used during training:
137
- - learning_rate: 0.0001
138
- - train_batch_size: 8
139
- - eval_batch_size: 4
140
- - seed: 42
141
- - gradient_accumulation_steps: 4
142
- - total_train_batch_size: 32
143
- - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
144
- - lr_scheduler_type: cosine
145
- - lr_scheduler_warmup_steps: 10
146
- - training_steps: 200
147
-
148
- ### Training results
149
-
150
- | Training Loss | Epoch | Step | Validation Loss |
151
- |:-------------:|:------:|:----:|:---------------:|
152
- | 0.5704 | 0.0004 | 1 | 0.6629 |
153
- | 0.4047 | 0.0214 | 50 | 0.5234 |
154
- | 0.4609 | 0.0428 | 100 | 0.5113 |
155
- | 0.4108 | 0.0643 | 150 | 0.5063 |
156
- | 0.4901 | 0.0857 | 200 | 0.5052 |
157
-
158
-
159
- ### Framework versions
160
-
161
- - PEFT 0.13.2
162
- - Transformers 4.46.0
163
- - Pytorch 2.5.0+cu124
164
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 6891bd52-22bf-446d-ac98-6dd8ab2b199d
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-3B
37
+ bf16: true
38
+ chat_template: llama3
39
+ data_processes: 16
40
+ dataset_prepared_path: null
41
+ datasets:
42
+ - data_files:
43
+ - e3f7343345b9b21f_train_data.json
44
+ ds_type: json
45
+ format: custom
46
+ path: /workspace/input_data/e3f7343345b9b21f_train_data.json
47
+ type:
48
+ field_instruction: description
49
+ field_output: code
50
+ format: '{instruction}'
51
+ no_input_format: '{instruction}'
52
+ system_format: '{system}'
53
+ system_prompt: ''
54
+ debug: null
55
+ deepspeed: null
56
+ device_map: auto
57
+ do_eval: true
58
+ early_stopping_patience: 5
59
+ eval_batch_size: 4
60
+ eval_max_new_tokens: 128
61
+ eval_steps: 50
62
+ eval_table_size: null
63
+ evals_per_epoch: null
64
+ flash_attention: true
65
+ fp16: false
66
+ fsdp: null
67
+ fsdp_config: null
68
+ gradient_accumulation_steps: 4
69
+ gradient_checkpointing: true
70
+ group_by_length: true
71
+ hub_model_id: aleegis09/6891bd52-22bf-446d-ac98-6dd8ab2b199d
72
+ hub_repo: null
73
+ hub_strategy: checkpoint
74
+ hub_token: null
75
+ learning_rate: 0.0001
76
+ load_in_4bit: false
77
+ load_in_8bit: false
78
+ local_rank: null
79
+ logging_steps: 1
80
+ lora_alpha: 128
81
+ lora_dropout: 0.05
82
+ lora_fan_in_fan_out: null
83
+ lora_model_dir: null
84
+ lora_r: 64
85
+ lora_target_linear: true
86
+ lr_scheduler: cosine
87
+ max_grad_norm: 1.0
88
+ max_memory:
89
+ 0: 75GB
90
+ max_steps: 200
91
+ micro_batch_size: 8
92
+ mlflow_experiment_name: /tmp/e3f7343345b9b21f_train_data.json
93
+ model_type: AutoModelForCausalLM
94
+ num_epochs: 3
95
+ optim_args:
96
+ adam_beta1: 0.9
97
+ adam_beta2: 0.95
98
+ adam_epsilon: 1e-5
99
+ optimizer: adamw_bnb_8bit
100
+ output_dir: miner_id_24
101
+ pad_to_sequence_len: true
102
+ resume_from_checkpoint: null
103
+ s2_attention: null
104
+ sample_packing: false
105
+ save_steps: 50
106
+ saves_per_epoch: null
107
+ sequence_len: 1024
108
+ strict: false
109
+ tf32: true
110
+ tokenizer_type: AutoTokenizer
111
+ train_on_inputs: false
112
+ trust_remote_code: true
113
+ val_set_size: 0.05
114
+ wandb_entity: null
115
+ wandb_mode: online
116
+ wandb_name: db8f3cf6-8e27-4f7a-a1cc-9f92fa694ab2
117
+ wandb_project: Gradients-On-Demand
118
+ wandb_run: your_name
119
+ wandb_runid: db8f3cf6-8e27-4f7a-a1cc-9f92fa694ab2
120
+ warmup_steps: 10
121
+ weight_decay: 0.0
122
+ xformers_attention: null
123
+
124
+ ```
125
+
126
+ </details><br>
127
+
128
+ # 6891bd52-22bf-446d-ac98-6dd8ab2b199d
129
+
130
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset.
131
+ It achieves the following results on the evaluation set:
132
+ - Loss: 0.5052
133
+
134
+ ## Model description
135
+
136
+ More information needed
137
+
138
+ ## Intended uses & limitations
139
+
140
+ More information needed
141
+
142
+ ## Training and evaluation data
143
+
144
+ More information needed
145
+
146
+ ## Training procedure
147
+
148
+ ### Training hyperparameters
149
+
150
+ The following hyperparameters were used during training:
151
+ - learning_rate: 0.0001
152
+ - train_batch_size: 8
153
+ - eval_batch_size: 4
154
+ - seed: 42
155
+ - gradient_accumulation_steps: 4
156
+ - total_train_batch_size: 32
157
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
158
+ - lr_scheduler_type: cosine
159
+ - lr_scheduler_warmup_steps: 10
160
+ - training_steps: 200
161
+
162
+ ### Training results
163
+
164
+ | Training Loss | Epoch | Step | Validation Loss |
165
+ |:-------------:|:------:|:----:|:---------------:|
166
+ | 0.5704 | 0.0004 | 1 | 0.6629 |
167
+ | 0.4047 | 0.0214 | 50 | 0.5234 |
168
+ | 0.4609 | 0.0428 | 100 | 0.5113 |
169
+ | 0.4108 | 0.0643 | 150 | 0.5063 |
170
+ | 0.4901 | 0.0857 | 200 | 0.5052 |
171
+
172
+
173
+ ### Framework versions
174
+
175
+ - PEFT 0.13.2
176
+ - Transformers 4.46.0
177
+ - Pytorch 2.5.0+cu124
178
+ - Datasets 3.0.1
179
  - Tokenizers 0.20.1