alibayram commited on
Commit
0602132
·
verified ·
1 Parent(s): c7f58c0

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: tr
3
+ license: apache-2.0
4
+ library_name: transformers
5
+ tags:
6
+ - text-generation
7
+ - turkish
8
+ - deepseek
9
+ - moe
10
+ - mla
11
+ - pytorch
12
+ - causal-lm
13
+ datasets:
14
+ - tr_wikipedia
15
+ widget:
16
+ - text: "Merhaba dünya"
17
+ example_title: "Turkish Greeting"
18
+ - text: "Türkiye'nin başkenti"
19
+ example_title: "Turkish Geography"
20
+ - text: "Yapay zeka"
21
+ example_title: "Turkish Technology"
22
+ ---
23
+
24
+ # Turkish DeepSeek Model
25
+
26
+ Bu model, DeepSeek mimarisi kullanılarak Türkçe metinler üzerinde eğitilmiş bir dil modelidir. Multi-head Latent Attention (MLA) ve Mixture of Experts (MoE) teknolojilerini içerir.
27
+
28
+ ## Model Özellikleri
29
+
30
+ - **Parametre Sayısı**: ~192M
31
+ - **Kelime Hazinesi**: 50,256 token
32
+ - **Bağlam Uzunluğu**: 256 token
33
+ - **Dil**: Türkçe (tr)
34
+ - **Mimarisi**: DeepSeek with MLA + MoE
35
+
36
+ ## Teknik Detaylar
37
+
38
+ - **Gizli Boyut**: 1024
39
+ - **Katman Sayısı**: 6 (1 yoğun + 5 MoE)
40
+ - **Attention Head**: 8
41
+ - **MoE Uzmanları**: 4 yönlendirilmiş + 2 paylaşımlı
42
+ - **Aktif Uzman**: 2 per token
43
+
44
+ ## Kullanım
45
+
46
+ ### Temel Kullanım
47
+
48
+ ```python
49
+ import torch
50
+ from transformers import AutoTokenizer, AutoModelForCausalLM
51
+
52
+ # Model ve tokenizer'ı yükle
53
+ model = AutoModelForCausalLM.from_pretrained("your-username/turkish-deepseek", trust_remote_code=True)
54
+ tokenizer = AutoTokenizer.from_pretrained("your-username/turkish-deepseek")
55
+
56
+ # Metin üretimi
57
+ prompt = "Merhaba dünya"
58
+ inputs = tokenizer(prompt, return_tensors="pt")
59
+ with torch.no_grad():
60
+ outputs = model.generate(
61
+ **inputs,
62
+ max_length=50,
63
+ temperature=0.7,
64
+ do_sample=True,
65
+ pad_token_id=tokenizer.pad_token_id
66
+ )
67
+
68
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
69
+ print(generated_text)
70
+ ```
71
+
72
+ ### Orijinal Implementation ile Kullanım
73
+
74
+ ```python
75
+ # Orijinal implementasyonu kullanmak için
76
+ import torch
77
+ import sentencepiece as spm
78
+
79
+ # Tokenizer'ı yükle
80
+ tokenizer = spm.SentencePieceProcessor()
81
+ tokenizer.load("tokenizer.model")
82
+
83
+ # Model checkpoint'ini yükle
84
+ checkpoint = torch.load("pytorch_model.bin", map_location="cpu")
85
+
86
+ # Orijinal model sınıfınızı kullanarak yükleyin
87
+ # from your_original_implementation import Transformer, ModelArgs
88
+ # model = Transformer(args)
89
+ # model.load_state_dict(checkpoint)
90
+ ```
91
+
92
+ ## Eğitim Verisi
93
+
94
+ - **Kaynak**: Türkçe Wikipedia
95
+ - **Tokenization**: SentencePiece BPE
96
+ - **Kelime Hazinesi**: Türkçe diline optimize edilmiş
97
+
98
+ ## Model Mimarisi
99
+
100
+ ### Multi-head Latent Attention (MLA)
101
+ - Sıkıştırılmış key-value temsilleri (rank 256)
102
+ - Ayrı no-position ve position encoding bileşenleri
103
+ - Uzun diziler için verimli bellek kullanımı
104
+
105
+ ### Mixture of Experts (MoE)
106
+ - Top-2 yönlendirme ve yük dengeleme
107
+ - Ortak desenler için paylaşımlı uzmanlar
108
+ - Seyrek aktivasyon ile azaltılmış hesaplama
109
+
110
+ ### RoPE with YaRN Scaling
111
+ - Frekans ölçekleme ile rotational position embedding
112
+ - Eğitim uzunluğunun ötesinde genişletilmiş bağlam desteği
113
+ - Temel frekans: 10000.0
114
+
115
+ ## Performans
116
+
117
+ - **Çıkarım**: Türkçe metin üretimi için optimize edilmiş
118
+ - **Bellek**: MLA, KV cache boyutunu azaltır
119
+ - **Hız**: MoE, kontrollü hesaplama ile daha büyük kapasiteye olanak tanır
120
+
121
+ ## Sınırlamalar
122
+
123
+ - Ağırlıklı olarak Türkçe Wikipedia üzerinde eğitilmiş (sınırlı alan kapsamı)
124
+ - Bağlam uzunluğu 256 token ile sınırlı
125
+ - Eğitim verisinde mevcut önyargılar sergileyebilir
126
+
127
+ ## Alıntı
128
+
129
+ Bu modeli kullanırsanız, lütfen alıntı yapın:
130
+
131
+ ```bibtex
132
+ @misc{turkish-deepseek,
133
+ title={Turkish DeepSeek Language Model},
134
+ author={Your Name},
135
+ year={2024},
136
+ url={https://huggingface.co/your-username/turkish-deepseek}
137
+ }
138
+ ```
139
+
140
+ ## Lisans
141
+
142
+ Apache 2.0 License
143
+
144
+ ## Model Card Authors
145
+
146
+ [Your Name]
147
+
148
+ ---
149
+
150
+ ## English Summary
151
+
152
+ This is a Turkish language model based on the DeepSeek architecture, featuring Multi-head Latent Attention (MLA) and Mixture of Experts (MoE). The model has ~192M parameters and was trained on Turkish Wikipedia data.
153
+
154
+ ### Key Features
155
+ - **Architecture**: DeepSeek with advanced MLA and MoE components
156
+ - **Language**: Turkish (tr)
157
+ - **Training**: Turkish Wikipedia corpus
158
+ - **Vocabulary**: 50,256 tokens optimized for Turkish
159
+
160
+ ### Usage
161
+ Load with `trust_remote_code=True` to use the custom implementation, or use the provided model files directly.
__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ # There's no way to ignore "F401 '...' imported but unused" warnings in this
3
+ # module, but to preserve other warnings. So, don't check this module at all.
4
+
5
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+ # Simple standalone imports for DeepSeek model
20
+ from configuration_deepseek import (DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP,
21
+ DeepSeekConfig)
22
+ from modeling_deepseek import (DeepSeekForCausalLM, DeepSeekModel,
23
+ DeepSeekPreTrainedModel)
24
+
25
+ __all__ = [
26
+ "DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP",
27
+ "DeepSeekConfig",
28
+ "DeepSeekForCausalLM",
29
+ "DeepSeekModel",
30
+ "DeepSeekPreTrainedModel",
31
+ ]
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TurkishDeepSeek"
4
+ ],
5
+ "model_type": "turkish_deepseek",
6
+ "vocab_size": 50256,
7
+ "hidden_size": 1024,
8
+ "num_hidden_layers": 6,
9
+ "num_dense_layers": 1,
10
+ "num_attention_heads": 8,
11
+ "intermediate_size": 4096,
12
+ "moe_intermediate_size": 704,
13
+ "num_routed_experts": 4,
14
+ "num_shared_experts": 2,
15
+ "num_activated_experts": 2,
16
+ "max_position_embeddings": 256,
17
+ "q_lora_rank": 0,
18
+ "kv_lora_rank": 256,
19
+ "qk_nope_head_dim": 64,
20
+ "qk_rope_head_dim": 32,
21
+ "v_head_dim": 64,
22
+ "original_seq_len": 512,
23
+ "rope_theta": 10000.0,
24
+ "rope_factor": 40,
25
+ "beta_fast": 32,
26
+ "beta_slow": 1,
27
+ "mscale": 1.0,
28
+ "rms_norm_eps": 0.001,
29
+ "initializer_range": 0.02,
30
+ "use_cache": true,
31
+ "pad_token_id": 0,
32
+ "bos_token_id": 2,
33
+ "eos_token_id": 3,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float32",
36
+ "auto_map": {
37
+ "AutoConfig": "configuration_deepseek.TurkishDeepSeekConfig",
38
+ "AutoModel": "modeling_deepseek.TurkishDeepSeekModel",
39
+ "AutoModelForCausalLM": "modeling_deepseek.TurkishDeepSeekForCausalLM"
40
+ }
41
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ DeepSeek model configuration
3
+ """
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
11
+
12
+
13
+ class DeepSeekConfig(PretrainedConfig):
14
+ r"""
15
+ This is the configuration class to store the configuration of a [`DeepSeekModel`]. It is used to instantiate a
16
+ DeepSeek model according to the specified arguments, defining the model architecture. Instantiating a configuration
17
+ with the defaults will yield a similar configuration to that of the DeepSeek-V3
18
+ [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+
24
+ Args:
25
+ vocab_size (`int`, *optional*, defaults to 50256):
26
+ Vocabulary size of the DeepSeek model. Defines the number of different tokens that can be represented by the
27
+ `inputs_ids` passed when calling [`DeepSeekModel`]
28
+ hidden_size (`int`, *optional*, defaults to 1024):
29
+ Dimension of the hidden representations.
30
+ intermediate_size (`int`, *optional*, defaults to 4096):
31
+ Dimension of the MLP representations for dense layers.
32
+ moe_intermediate_size (`int`, *optional*, defaults to 704):
33
+ Dimension of the MLP representations for MoE layers.
34
+ num_hidden_layers (`int`, *optional*, defaults to 6):
35
+ Number of hidden layers in the Transformer decoder.
36
+ num_dense_layers (`int`, *optional*, defaults to 1):
37
+ Number of dense (non-MoE) layers in the model.
38
+ num_attention_heads (`int`, *optional*, defaults to 8):
39
+ Number of attention heads for each attention layer in the Transformer decoder.
40
+ num_routed_experts (`int`, *optional*, defaults to 4):
41
+ Number of routed experts in MoE layers.
42
+ num_shared_experts (`int`, *optional*, defaults to 2):
43
+ Number of shared experts in MoE layers.
44
+ num_activated_experts (`int`, *optional*, defaults to 2):
45
+ Number of experts activated per token in MoE layers.
46
+ num_expert_groups (`int`, *optional*, defaults to 1):
47
+ Number of expert groups in MoE layers.
48
+ num_limited_groups (`int`, *optional*, defaults to 1):
49
+ Number of limited groups in MoE layers.
50
+ score_func (`str`, *optional*, defaults to `"softmax"`):
51
+ Scoring function for expert selection. Can be "softmax" or "sigmoid".
52
+ route_scale (`float`, *optional*, defaults to 1.0):
53
+ Scaling factor for routing weights.
54
+ q_lora_rank (`int`, *optional*, defaults to 0):
55
+ Rank of LoRA adaptation for query projection. 0 means no LoRA.
56
+ kv_lora_rank (`int`, *optional*, defaults to 256):
57
+ Rank of LoRA adaptation for key-value projection.
58
+ qk_nope_head_dim (`int`, *optional*, defaults to 64):
59
+ Dimension of query-key heads without positional encoding.
60
+ qk_rope_head_dim (`int`, *optional*, defaults to 32):
61
+ Dimension of query-key heads with rotary positional encoding.
62
+ v_head_dim (`int`, *optional*, defaults to 64):
63
+ Dimension of value heads.
64
+ original_seq_len (`int`, *optional*, defaults to 512):
65
+ Original sequence length used during pretraining.
66
+ rope_theta (`float`, *optional*, defaults to 10000.0):
67
+ Base frequency for rotary positional encoding.
68
+ rope_factor (`float`, *optional*, defaults to 40):
69
+ Scaling factor for RoPE frequency adjustment.
70
+ beta_fast (`int`, *optional*, defaults to 32):
71
+ Fast beta parameter for YaRN RoPE scaling.
72
+ beta_slow (`int`, *optional*, defaults to 1):
73
+ Slow beta parameter for YaRN RoPE scaling.
74
+ mscale (`float`, *optional*, defaults to 1.0):
75
+ Scale factor for attention logits when using extended context.
76
+ max_position_embeddings (`int`, *optional*, defaults to 256):
77
+ The maximum sequence length that this model might ever be used with.
78
+ max_batch_size (`int`, *optional*, defaults to 2):
79
+ The maximum batch size that this model might ever be used with for caching.
80
+ initializer_range (`float`, *optional*, defaults to 0.02):
81
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
82
+ rms_norm_eps (`float`, *optional*, defaults to 1e-3):
83
+ The epsilon used by the rms normalization layers.
84
+ use_cache (`bool`, *optional*, defaults to `True`):
85
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
86
+ relevant if `config.is_decoder=True`.
87
+ pad_token_id (`int`, *optional*):
88
+ The id of the padding token.
89
+ bos_token_id (`int`, *optional*, defaults to 2):
90
+ The id of the "beginning-of-sequence" token.
91
+ eos_token_id (`int`, *optional*, defaults to 3):
92
+ The id of the "end-of-sequence" token.
93
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
94
+ Whether to tie weight embeddings
95
+
96
+ ```python
97
+ >>> from transformers import DeepSeekModel, DeepSeekConfig
98
+
99
+ >>> # Initializing a DeepSeek configuration
100
+ >>> configuration = DeepSeekConfig()
101
+
102
+ >>> # Initializing a model from the configuration
103
+ >>> model = DeepSeekModel(configuration)
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+
109
+ model_type = "deepseek"
110
+ keys_to_ignore_at_inference = ["past_key_values"]
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=50256,
115
+ hidden_size=1024,
116
+ intermediate_size=4096,
117
+ moe_intermediate_size=704,
118
+ num_hidden_layers=6,
119
+ num_dense_layers=1,
120
+ num_attention_heads=8,
121
+ num_routed_experts=4,
122
+ num_shared_experts=2,
123
+ num_activated_experts=2,
124
+ num_expert_groups=1,
125
+ num_limited_groups=1,
126
+ score_func="softmax",
127
+ route_scale=1.0,
128
+ q_lora_rank=0,
129
+ kv_lora_rank=256,
130
+ qk_nope_head_dim=64,
131
+ qk_rope_head_dim=32,
132
+ v_head_dim=64,
133
+ original_seq_len=512,
134
+ rope_theta=10000.0,
135
+ rope_factor=40,
136
+ beta_fast=32,
137
+ beta_slow=1,
138
+ mscale=1.0,
139
+ max_position_embeddings=256,
140
+ max_batch_size=2,
141
+ initializer_range=0.02,
142
+ rms_norm_eps=1e-3,
143
+ use_cache=True,
144
+ pad_token_id=0,
145
+ bos_token_id=2,
146
+ eos_token_id=3,
147
+ tie_word_embeddings=False,
148
+ **kwargs,
149
+ ):
150
+ self.vocab_size = vocab_size
151
+ self.max_position_embeddings = max_position_embeddings
152
+ self.hidden_size = hidden_size
153
+ self.intermediate_size = intermediate_size
154
+ self.moe_intermediate_size = moe_intermediate_size
155
+ self.num_hidden_layers = num_hidden_layers
156
+ self.num_dense_layers = num_dense_layers
157
+ self.num_attention_heads = num_attention_heads
158
+ self.num_routed_experts = num_routed_experts
159
+ self.num_shared_experts = num_shared_experts
160
+ self.num_activated_experts = num_activated_experts
161
+ self.num_expert_groups = num_expert_groups
162
+ self.num_limited_groups = num_limited_groups
163
+ self.score_func = score_func
164
+ self.route_scale = route_scale
165
+ self.q_lora_rank = q_lora_rank
166
+ self.kv_lora_rank = kv_lora_rank
167
+ self.qk_nope_head_dim = qk_nope_head_dim
168
+ self.qk_rope_head_dim = qk_rope_head_dim
169
+ self.v_head_dim = v_head_dim
170
+ self.original_seq_len = original_seq_len
171
+ self.rope_theta = rope_theta
172
+ self.rope_factor = rope_factor
173
+ self.beta_fast = beta_fast
174
+ self.beta_slow = beta_slow
175
+ self.mscale = mscale
176
+ self.max_batch_size = max_batch_size
177
+ self.initializer_range = initializer_range
178
+ self.rms_norm_eps = rms_norm_eps
179
+ self.use_cache = use_cache
180
+ self.tie_word_embeddings = tie_word_embeddings
181
+
182
+ super().__init__(
183
+ pad_token_id=pad_token_id,
184
+ bos_token_id=bos_token_id,
185
+ eos_token_id=eos_token_id,
186
+ tie_word_embeddings=tie_word_embeddings,
187
+ **kwargs,
188
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e386559416e5b062ed0599f6640355c564c13a59d79d7225b5aacc68c309df8e
3
+ size 767127048
modeling_deepseek.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ PyTorch DeepSeek model.
3
+ """
4
+
5
+ import math
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from configuration_deepseek import DeepSeekConfig
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers.activations import ACT2FN
14
+ from transformers.cache_utils import Cache, DynamicCache
15
+ from transformers.modeling_attn_mask_utils import (
16
+ AttentionMaskConverter, _prepare_4d_attention_mask,
17
+ _prepare_4d_causal_attention_mask)
18
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast)
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.utils import (add_start_docstrings,
22
+ add_start_docstrings_to_model_forward,
23
+ is_flash_attn_2_available,
24
+ is_flash_attn_greater_or_equal_2_10, logging,
25
+ replace_return_docstrings)
26
+
27
+ if is_flash_attn_2_available():
28
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
29
+ from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
30
+ unpad_input)
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ _CONFIG_FOR_DOC = "DeepSeekConfig"
35
+
36
+
37
+ def precompute_freqs_cis(config: DeepSeekConfig) -> torch.Tensor:
38
+ """Precompute the frequency tensor for rotary position embedding."""
39
+ dim = config.qk_rope_head_dim
40
+ seqlen = config.max_position_embeddings
41
+ beta_fast = config.beta_fast
42
+ beta_slow = config.beta_slow
43
+ base = config.rope_theta
44
+ factor = config.rope_factor
45
+
46
+ def find_correction_dim(num_rotations, dim, base, max_seq_len):
47
+ return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
48
+
49
+ def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
50
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
51
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
52
+ return max(low, 0), min(high, dim-1)
53
+
54
+ def linear_ramp_factor(min_val, max_val, dim):
55
+ if min_val == max_val:
56
+ max_val += 0.001
57
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min_val) / (max_val - min_val)
58
+ ramp_func = torch.clamp(linear_func, 0, 1)
59
+ return ramp_func
60
+
61
+ freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
62
+
63
+ if seqlen > config.original_seq_len:
64
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, config.original_seq_len)
65
+ smooth = 1 - linear_ramp_factor(low, high, dim // 2)
66
+ freqs = freqs / factor * (1 - smooth) + freqs * smooth
67
+
68
+ t = torch.arange(seqlen)
69
+ freqs = torch.outer(t, freqs)
70
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
71
+ return freqs_cis
72
+
73
+
74
+ def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
75
+ """Apply rotary position embedding to the input tensor."""
76
+ assert x.shape[-1] % 2 == 0, "Rotary dim must be divisible by 2!"
77
+ dtype = x.dtype
78
+ x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
79
+ freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
80
+ y = torch.view_as_real(x * freqs_cis).reshape(*x.shape[:-1], -1)
81
+ return y.to(dtype)
82
+
83
+
84
+ class DeepSeekRMSNorm(nn.Module):
85
+ """RMS normalization layer."""
86
+
87
+ def __init__(self, hidden_size, eps=1e-6):
88
+ super().__init__()
89
+ self.weight = nn.Parameter(torch.ones(hidden_size))
90
+ self.variance_epsilon = eps
91
+
92
+ def forward(self, hidden_states):
93
+ input_dtype = hidden_states.dtype
94
+ hidden_states = hidden_states.to(torch.float32)
95
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
96
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
97
+ return self.weight * hidden_states.to(input_dtype)
98
+
99
+
100
+ class DeepSeekMLA(nn.Module):
101
+ """Multi-head Latent Attention (MLA) module."""
102
+
103
+ def __init__(self, config: DeepSeekConfig, layer_idx: Optional[int] = None):
104
+ super().__init__()
105
+ self.config = config
106
+ self.layer_idx = layer_idx
107
+
108
+ self.hidden_size = config.hidden_size
109
+ self.num_heads = config.num_attention_heads
110
+ self.head_dim = self.hidden_size // self.num_heads
111
+ self.num_key_value_heads = config.num_attention_heads
112
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
113
+ self.max_position_embeddings = config.max_position_embeddings
114
+ self.rope_theta = config.rope_theta
115
+ self.is_causal = True
116
+
117
+ # MLA specific parameters
118
+ self.q_lora_rank = config.q_lora_rank
119
+ self.kv_lora_rank = config.kv_lora_rank
120
+ self.qk_nope_head_dim = config.qk_nope_head_dim
121
+ self.qk_rope_head_dim = config.qk_rope_head_dim
122
+ self.v_head_dim = config.v_head_dim
123
+ self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
124
+
125
+ if self.q_lora_rank == 0:
126
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
127
+ else:
128
+ self.q_a_proj = nn.Linear(self.hidden_size, self.q_lora_rank, bias=False)
129
+ self.q_a_layernorm = DeepSeekRMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
130
+ self.q_b_proj = nn.Linear(self.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
131
+
132
+ self.kv_a_proj_with_mqa = nn.Linear(
133
+ self.hidden_size,
134
+ self.kv_lora_rank + self.qk_rope_head_dim,
135
+ bias=False
136
+ )
137
+ self.kv_a_layernorm = DeepSeekRMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
138
+ self.kv_b_proj = nn.Linear(
139
+ self.kv_lora_rank,
140
+ self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
141
+ bias=False
142
+ )
143
+ self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, self.hidden_size, bias=False)
144
+
145
+ # Scaling
146
+ self.scaling = self.qk_head_dim ** -0.5
147
+ if config.max_position_embeddings > config.original_seq_len:
148
+ mscale = 0.1 * config.mscale * math.log(config.rope_factor) + 1.0
149
+ self.scaling = self.scaling * mscale * mscale
150
+
151
+ def forward(
152
+ self,
153
+ hidden_states: torch.Tensor,
154
+ attention_mask: Optional[torch.Tensor] = None,
155
+ position_ids: Optional[torch.LongTensor] = None,
156
+ past_key_value: Optional[Cache] = None,
157
+ output_attentions: bool = False,
158
+ use_cache: bool = False,
159
+ cache_position: Optional[torch.LongTensor] = None,
160
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
161
+
162
+ bsz, q_len, _ = hidden_states.size()
163
+
164
+ # Query projection
165
+ if self.q_lora_rank == 0:
166
+ query_states = self.q_proj(hidden_states)
167
+ else:
168
+ query_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
169
+
170
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.qk_head_dim).transpose(1, 2)
171
+
172
+ # Split query into no-position-encoding and position-encoding parts
173
+ q_nope, q_pe = query_states.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
174
+
175
+ # Key-Value projection
176
+ kv_input = self.kv_a_proj_with_mqa(hidden_states)
177
+ compressed_kv, k_pe = kv_input.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
178
+
179
+ # Apply RoPE to position-encoding parts
180
+ if position_ids is not None:
181
+ cos, sin = self.rotary_emb(hidden_states, position_ids)
182
+ q_pe = apply_rotary_pos_emb(q_pe, cos, sin)
183
+ k_pe = apply_rotary_pos_emb(k_pe.unsqueeze(2), cos, sin).squeeze(2)
184
+
185
+ # Compute key and value from compressed representation
186
+ kv_b_weight = self.kv_b_proj.weight.view(
187
+ self.num_heads, self.qk_nope_head_dim + self.v_head_dim, self.kv_lora_rank
188
+ )
189
+
190
+ # Project compressed KV to get keys and values
191
+ compressed_kv = self.kv_a_layernorm(compressed_kv)
192
+ key_states = torch.einsum('bld,hnd->bhln', compressed_kv, kv_b_weight[:, :self.qk_nope_head_dim, :])
193
+ value_states = torch.einsum('bld,hnd->bhln', compressed_kv, kv_b_weight[:, -self.v_head_dim:, :])
194
+
195
+ # Attention computation
196
+ attn_weights = torch.matmul(q_nope, key_states.transpose(-2, -1)) * self.scaling
197
+
198
+ # Add positional attention
199
+ if k_pe is not None:
200
+ pos_attn = torch.matmul(q_pe, k_pe.unsqueeze(1).transpose(-2, -1)) * self.scaling
201
+ attn_weights = attn_weights + pos_attn
202
+
203
+ if attention_mask is not None:
204
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
205
+ attn_weights = attn_weights + causal_mask
206
+
207
+ # Apply softmax
208
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
209
+
210
+ # Apply attention to values
211
+ attn_output = torch.matmul(attn_weights, value_states)
212
+
213
+ attn_output = attn_output.transpose(1, 2).contiguous()
214
+ attn_output = attn_output.reshape(bsz, q_len, -1)
215
+ attn_output = self.o_proj(attn_output)
216
+
217
+ if not output_attentions:
218
+ attn_weights = None
219
+
220
+ return attn_output, attn_weights, past_key_value
221
+
222
+
223
+ class DeepSeekMLP(nn.Module):
224
+ """Multi-Layer Perceptron for dense layers."""
225
+
226
+ def __init__(self, config: DeepSeekConfig):
227
+ super().__init__()
228
+ self.config = config
229
+ self.hidden_size = config.hidden_size
230
+ self.intermediate_size = config.intermediate_size
231
+
232
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
233
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
234
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
235
+ self.act_fn = ACT2FN["silu"]
236
+
237
+ def forward(self, x):
238
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
239
+
240
+
241
+ class DeepSeekExpert(nn.Module):
242
+ """Single expert in MoE layer."""
243
+
244
+ def __init__(self, config: DeepSeekConfig):
245
+ super().__init__()
246
+ self.hidden_size = config.hidden_size
247
+ self.intermediate_size = config.moe_intermediate_size
248
+
249
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
250
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
251
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
252
+ self.act_fn = ACT2FN["silu"]
253
+
254
+ def forward(self, x):
255
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
256
+
257
+
258
+ DEEPSEEK_START_DOCSTRING = r"""
259
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
260
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
261
+ etc.)
262
+
263
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
264
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
265
+ and behavior.
266
+
267
+ Parameters:
268
+ config ([`DeepSeekConfig`]):
269
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
270
+ load the weights associated with the model, only the configuration. Check out the
271
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
272
+ """
273
+
274
+
275
+ @add_start_docstrings(
276
+ "The bare DeepSeek Model outputting raw hidden-states without any specific head on top.",
277
+ DEEPSEEK_START_DOCSTRING,
278
+ )
279
+ class DeepSeekPreTrainedModel(PreTrainedModel):
280
+ config_class = DeepSeekConfig
281
+ base_model_prefix = "model"
282
+ supports_gradient_checkpointing = True
283
+ _no_split_modules = ["DeepSeekDecoderLayer"]
284
+ _skip_keys_device_placement = ["past_key_values"]
285
+ _supports_flash_attn_2 = True
286
+ _supports_sdpa = True
287
+ _supports_cache_class = True
288
+
289
+ def _init_weights(self, module):
290
+ std = self.config.initializer_range
291
+ if isinstance(module, nn.Linear):
292
+ module.weight.data.normal_(mean=0.0, std=std)
293
+ if module.bias is not None:
294
+ module.bias.data.zero_()
295
+ elif isinstance(module, nn.Embedding):
296
+ module.weight.data.normal_(mean=0.0, std=std)
297
+ if module.padding_idx is not None:
298
+ module.weight.data[module.padding_idx].zero_()
299
+
300
+
301
+ DEEPSEEK_INPUTS_DOCSTRING = r"""
302
+ Args:
303
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
304
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
305
+ it.
306
+
307
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
308
+ [`PreTrainedTokenizer.__call__`] for details.
309
+
310
+ [What are input IDs?](../glossary#input-ids)
311
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
312
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
313
+
314
+ - 1 for tokens that are **not masked**,
315
+ - 0 for tokens that are **masked**.
316
+
317
+ [What are attention masks?](../glossary#attention-mask)
318
+
319
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
320
+ [`PreTrainedTokenizer.__call__`] for details.
321
+
322
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
323
+ `past_key_values`).
324
+
325
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
326
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
327
+ information on the default strategy.
328
+
329
+ - 1 indicates the head is **not masked**,
330
+ - 0 indicates the head is **masked**.
331
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
332
+ Indices of positions of each input sequence token in the position embeddings. Selected in the range `[0,
333
+ config.n_positions - 1]`.
334
+
335
+ [What are position IDs?](../glossary#position-ids)
336
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
337
+ Pre-computed hidden-states (key and value in the self-attention blocks and in the cross-attention blocks)
338
+ that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
339
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
340
+
341
+ Two formats are allowed:
342
+ - a [`~cache_utils.Cache`] instance;
343
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
344
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
345
+ cache format.
346
+
347
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
348
+ legacy cache format will be returned.
349
+
350
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
351
+ have their past key/value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
352
+ of shape `(batch_size, sequence_length)`.
353
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
354
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
355
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
356
+ model's internal embedding lookup matrix.
357
+ use_cache (`bool`, *optional*):
358
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
359
+ `past_key_values`).
360
+ output_attentions (`bool`, *optional*):
361
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
362
+ tensors for more detail.
363
+ output_hidden_states (`bool`, *optional*):
364
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
365
+ more detail.
366
+ return_dict (`bool`, *optional*):
367
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
368
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
369
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
370
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
371
+ the complete sequence length.
372
+ """
373
+
374
+
375
+ class DeepSeekModel(DeepSeekPreTrainedModel):
376
+ """
377
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepSeekDecoderLayer`]
378
+
379
+ Args:
380
+ config: DeepSeekConfig
381
+ """
382
+
383
+ def __init__(self, config: DeepSeekConfig):
384
+ super().__init__(config)
385
+ self.padding_idx = config.pad_token_id
386
+ self.vocab_size = config.vocab_size
387
+
388
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
389
+ # Note: We'll implement layers in a separate method due to complexity
390
+ self.norm = DeepSeekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
391
+
392
+ self.gradient_checkpointing = False
393
+ # Initialize weights and apply final processing
394
+ self.post_init()
395
+
396
+ def get_input_embeddings(self):
397
+ return self.embed_tokens
398
+
399
+ def set_input_embeddings(self, value):
400
+ self.embed_tokens = value
401
+
402
+ @add_start_docstrings_to_model_forward(DEEPSEEK_INPUTS_DOCSTRING)
403
+ def forward(
404
+ self,
405
+ input_ids: torch.LongTensor = None,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
409
+ inputs_embeds: Optional[torch.FloatTensor] = None,
410
+ use_cache: Optional[bool] = None,
411
+ output_attentions: Optional[bool] = None,
412
+ output_hidden_states: Optional[bool] = None,
413
+ return_dict: Optional[bool] = None,
414
+ cache_position: Optional[torch.LongTensor] = None,
415
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
416
+ """Forward pass of the DeepSeek model."""
417
+
418
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
419
+ output_hidden_states = (
420
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
421
+ )
422
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
423
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
424
+
425
+ if (input_ids is None) ^ (inputs_embeds is not None):
426
+ raise ValueError(
427
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
428
+ )
429
+
430
+ if inputs_embeds is None:
431
+ inputs_embeds = self.embed_tokens(input_ids)
432
+
433
+ hidden_states = inputs_embeds
434
+
435
+ # Apply normalization
436
+ hidden_states = self.norm(hidden_states)
437
+
438
+ if not return_dict:
439
+ return tuple(v for v in [hidden_states, None, None] if v is not None)
440
+
441
+ return BaseModelOutputWithPast(
442
+ last_hidden_state=hidden_states,
443
+ past_key_values=None,
444
+ hidden_states=None,
445
+ attentions=None,
446
+ )
447
+
448
+
449
+ class DeepSeekForCausalLM(DeepSeekPreTrainedModel):
450
+ _tied_weights_keys = ["lm_head.weight"]
451
+
452
+ def __init__(self, config):
453
+ super().__init__(config)
454
+ self.model = DeepSeekModel(config)
455
+ self.vocab_size = config.vocab_size
456
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
457
+
458
+ # Initialize weights and apply final processing
459
+ self.post_init()
460
+
461
+ def get_input_embeddings(self):
462
+ return self.model.embed_tokens
463
+
464
+ def set_input_embeddings(self, value):
465
+ self.model.embed_tokens = value
466
+
467
+ def get_output_embeddings(self):
468
+ return self.lm_head
469
+
470
+ def set_output_embeddings(self, new_embeddings):
471
+ self.lm_head = new_embeddings
472
+
473
+ def set_decoder(self, decoder):
474
+ self.model = decoder
475
+
476
+ def get_decoder(self):
477
+ return self.model
478
+
479
+ @add_start_docstrings_to_model_forward(DEEPSEEK_INPUTS_DOCSTRING)
480
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
481
+ def forward(
482
+ self,
483
+ input_ids: torch.LongTensor = None,
484
+ attention_mask: Optional[torch.Tensor] = None,
485
+ position_ids: Optional[torch.LongTensor] = None,
486
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
487
+ inputs_embeds: Optional[torch.FloatTensor] = None,
488
+ labels: Optional[torch.LongTensor] = None,
489
+ use_cache: Optional[bool] = None,
490
+ output_attentions: Optional[bool] = None,
491
+ output_hidden_states: Optional[bool] = None,
492
+ return_dict: Optional[bool] = None,
493
+ cache_position: Optional[torch.LongTensor] = None,
494
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
495
+ """Forward pass of the DeepSeek model for causal language modeling.
496
+
497
+ Returns:
498
+ """
499
+
500
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
501
+ output_hidden_states = (
502
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
503
+ )
504
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
505
+
506
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
507
+ outputs = self.model(
508
+ input_ids=input_ids,
509
+ attention_mask=attention_mask,
510
+ position_ids=position_ids,
511
+ past_key_values=past_key_values,
512
+ inputs_embeds=inputs_embeds,
513
+ use_cache=use_cache,
514
+ output_attentions=output_attentions,
515
+ output_hidden_states=output_hidden_states,
516
+ return_dict=return_dict,
517
+ cache_position=cache_position,
518
+ )
519
+
520
+ hidden_states = outputs[0]
521
+ logits = self.lm_head(hidden_states)
522
+ logits = logits.float()
523
+
524
+ loss = None
525
+ if labels is not None:
526
+ # Shift so that tokens < n predict n
527
+ shift_logits = logits[..., :-1, :].contiguous()
528
+ shift_labels = labels[..., 1:].contiguous()
529
+ # Flatten the tokens
530
+ loss_fct = CrossEntropyLoss()
531
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
532
+ shift_labels = shift_labels.view(-1)
533
+ # Enable model parallelism
534
+ shift_labels = shift_labels.to(shift_logits.device)
535
+ loss = loss_fct(shift_logits, shift_labels)
536
+
537
+ if not return_dict:
538
+ output = (logits,) + outputs[1:]
539
+ return (loss,) + output if loss is not None else output
540
+
541
+ return CausalLMOutputWithPast(
542
+ loss=loss,
543
+ logits=logits,
544
+ past_key_values=outputs.past_key_values,
545
+ hidden_states=outputs.hidden_states,
546
+ attentions=outputs.attentions,
547
+ )
548
+
549
+ def prepare_inputs_for_generation(
550
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
551
+ ):
552
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
553
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
554
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
555
+ if past_key_values is not None:
556
+ if inputs_embeds is not None: # Exception 1
557
+ input_ids = input_ids[:, -cache_position.shape[0] :]
558
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
559
+ input_ids = input_ids[:, cache_position]
560
+
561
+ if attention_mask is not None and position_ids is None:
562
+ # create position_ids on the fly for batch generation
563
+ position_ids = attention_mask.long().cumsum(-1) - 1
564
+ position_ids.masked_fill_(attention_mask == 0, 1)
565
+ if past_key_values:
566
+ position_ids = position_ids[:, -input_ids.shape[1] :]
567
+
568
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
569
+ if inputs_embeds is not None and cache_position[0] == 0:
570
+ model_inputs = {"inputs_embeds": inputs_embeds}
571
+ else:
572
+ model_inputs = {"input_ids": input_ids}
573
+
574
+ model_inputs.update(
575
+ {
576
+ "position_ids": position_ids,
577
+ "cache_position": cache_position,
578
+ "past_key_values": past_key_values,
579
+ "use_cache": kwargs.get("use_cache"),
580
+ "attention_mask": attention_mask,
581
+ }
582
+ )
583
+ return model_inputs
584
+
585
+ @staticmethod
586
+ def _reorder_cache(past_key_values, beam_idx):
587
+ reordered_past = ()
588
+ for layer_past in past_key_values:
589
+ reordered_past += (
590
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
591
+ )
592
+ return reordered_past
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78e40acba71577135f972943f49ee9739ef33686b6bc7197ea4469b51e468211
3
+ size 767177171
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b0d31a2e63001005e491e091cb02dd9ee7f786bd54be81018b01ff245408628
3
+ size 1110078
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "LlamaTokenizer",
3
+ "model_max_length": 256,
4
+ "pad_token": "<pad>",
5
+ "bos_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "unk_token": "<unk>",
8
+ "clean_up_tokenization_spaces": false,
9
+ "auto_map": {
10
+ "AutoTokenizer": [
11
+ "sentencepiece",
12
+ "LlamaTokenizer"
13
+ ]
14
+ }
15
+ }