File size: 3,679 Bytes
ba32c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f807a2
 
 
ba32c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-coraa-exp-11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-coraa-exp-11

This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.9926
- Wer: 0.9866
- Cer: 0.9323

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 38.5161       | 1.0   | 14   | 34.2489         | 1.0    | 0.9510 |
| 38.5161       | 2.0   | 28   | 23.3869         | 1.0    | 0.9510 |
| 38.5161       | 3.0   | 42   | 19.6721         | 1.0    | 0.9510 |
| 38.5161       | 4.0   | 56   | 18.3735         | 1.0    | 0.9510 |
| 38.5161       | 5.0   | 70   | 17.5507         | 1.0026 | 0.9496 |
| 38.5161       | 6.0   | 84   | 16.9340         | 1.0738 | 0.9688 |
| 38.5161       | 7.0   | 98   | 17.3229         | 1.0004 | 0.9511 |
| 17.5323       | 8.0   | 112  | 16.4594         | 1.0156 | 0.9314 |
| 17.5323       | 9.0   | 126  | 12.4451         | 1.0299 | 0.9352 |
| 17.5323       | 10.0  | 140  | 10.0922         | 1.0    | 0.9619 |
| 17.5323       | 11.0  | 154  | 9.5186          | 0.9998 | 0.9618 |
| 17.5323       | 12.0  | 168  | 8.9926          | 0.9866 | 0.9323 |
| 17.5323       | 13.0  | 182  | 9.0185          | 0.9839 | 0.9167 |
| 17.5323       | 14.0  | 196  | 9.1242          | 0.9837 | 0.9216 |
| 6.6506        | 15.0  | 210  | 9.0501          | 0.9880 | 0.8844 |
| 6.6506        | 16.0  | 224  | 9.1892          | 0.9777 | 0.9022 |
| 6.6506        | 17.0  | 238  | 9.1733          | 0.9799 | 0.8847 |
| 6.6506        | 18.0  | 252  | 9.3033          | 0.9799 | 0.8733 |
| 6.6506        | 19.0  | 266  | 9.2853          | 0.9746 | 0.8990 |
| 6.6506        | 20.0  | 280  | 9.4380          | 0.9748 | 0.9086 |
| 6.6506        | 21.0  | 294  | 9.5132          | 0.9750 | 0.8900 |
| 3.6568        | 22.0  | 308  | 9.6268          | 0.9817 | 0.8811 |
| 3.6568        | 23.0  | 322  | 9.6989          | 1.0043 | 0.8847 |
| 3.6568        | 24.0  | 336  | 9.6113          | 0.9789 | 0.8963 |
| 3.6568        | 25.0  | 350  | 9.7947          | 0.9807 | 0.8924 |
| 3.6568        | 26.0  | 364  | 9.8381          | 0.9795 | 0.8979 |
| 3.6568        | 27.0  | 378  | 10.0306         | 0.9789 | 0.8952 |
| 3.6568        | 28.0  | 392  | 9.9950          | 0.9793 | 0.8947 |
| 3.316         | 29.0  | 406  | 10.1488         | 0.9781 | 0.8979 |
| 3.316         | 30.0  | 420  | 10.1934         | 0.9809 | 0.9092 |
| 3.316         | 31.0  | 434  | 10.2146         | 0.9880 | 0.9299 |
| 3.316         | 32.0  | 448  | 10.2985         | 0.9998 | 0.9593 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3