--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-coraa-exp-11 results: [] --- # wav2vec2-large-xlsr-coraa-exp-11 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.9926 - Wer: 0.9866 - Cer: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 38.5161 | 1.0 | 14 | 34.2489 | 1.0 | 0.9510 | | 38.5161 | 2.0 | 28 | 23.3869 | 1.0 | 0.9510 | | 38.5161 | 3.0 | 42 | 19.6721 | 1.0 | 0.9510 | | 38.5161 | 4.0 | 56 | 18.3735 | 1.0 | 0.9510 | | 38.5161 | 5.0 | 70 | 17.5507 | 1.0026 | 0.9496 | | 38.5161 | 6.0 | 84 | 16.9340 | 1.0738 | 0.9688 | | 38.5161 | 7.0 | 98 | 17.3229 | 1.0004 | 0.9511 | | 17.5323 | 8.0 | 112 | 16.4594 | 1.0156 | 0.9314 | | 17.5323 | 9.0 | 126 | 12.4451 | 1.0299 | 0.9352 | | 17.5323 | 10.0 | 140 | 10.0922 | 1.0 | 0.9619 | | 17.5323 | 11.0 | 154 | 9.5186 | 0.9998 | 0.9618 | | 17.5323 | 12.0 | 168 | 8.9926 | 0.9866 | 0.9323 | | 17.5323 | 13.0 | 182 | 9.0185 | 0.9839 | 0.9167 | | 17.5323 | 14.0 | 196 | 9.1242 | 0.9837 | 0.9216 | | 6.6506 | 15.0 | 210 | 9.0501 | 0.9880 | 0.8844 | | 6.6506 | 16.0 | 224 | 9.1892 | 0.9777 | 0.9022 | | 6.6506 | 17.0 | 238 | 9.1733 | 0.9799 | 0.8847 | | 6.6506 | 18.0 | 252 | 9.3033 | 0.9799 | 0.8733 | | 6.6506 | 19.0 | 266 | 9.2853 | 0.9746 | 0.8990 | | 6.6506 | 20.0 | 280 | 9.4380 | 0.9748 | 0.9086 | | 6.6506 | 21.0 | 294 | 9.5132 | 0.9750 | 0.8900 | | 3.6568 | 22.0 | 308 | 9.6268 | 0.9817 | 0.8811 | | 3.6568 | 23.0 | 322 | 9.6989 | 1.0043 | 0.8847 | | 3.6568 | 24.0 | 336 | 9.6113 | 0.9789 | 0.8963 | | 3.6568 | 25.0 | 350 | 9.7947 | 0.9807 | 0.8924 | | 3.6568 | 26.0 | 364 | 9.8381 | 0.9795 | 0.8979 | | 3.6568 | 27.0 | 378 | 10.0306 | 0.9789 | 0.8952 | | 3.6568 | 28.0 | 392 | 9.9950 | 0.9793 | 0.8947 | | 3.316 | 29.0 | 406 | 10.1488 | 0.9781 | 0.8979 | | 3.316 | 30.0 | 420 | 10.1934 | 0.9809 | 0.9092 | | 3.316 | 31.0 | 434 | 10.2146 | 0.9880 | 0.9299 | | 3.316 | 32.0 | 448 | 10.2985 | 0.9998 | 0.9593 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.13.3