Commit
·
e043ce8
1
Parent(s):
4c04d3f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xlsr-coraa-exp-12
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xlsr-coraa-exp-12
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5762
|
20 |
+
- Wer: 0.3531
|
21 |
+
- Cer: 0.1822
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 150
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
55 |
+
| 37.6216 | 1.0 | 14 | 23.2071 | 1.0 | 0.9619 |
|
56 |
+
| 37.6216 | 2.0 | 28 | 6.9366 | 1.0 | 0.9619 |
|
57 |
+
| 37.6216 | 3.0 | 42 | 4.4250 | 1.0 | 0.9619 |
|
58 |
+
| 37.6216 | 4.0 | 56 | 3.9154 | 1.0 | 0.9619 |
|
59 |
+
| 37.6216 | 5.0 | 70 | 3.6849 | 1.0 | 0.9619 |
|
60 |
+
| 37.6216 | 6.0 | 84 | 3.5283 | 1.0 | 0.9619 |
|
61 |
+
| 37.6216 | 7.0 | 98 | 3.3716 | 1.0 | 0.9619 |
|
62 |
+
| 8.823 | 8.0 | 112 | 3.2657 | 1.0 | 0.9619 |
|
63 |
+
| 8.823 | 9.0 | 126 | 3.1796 | 1.0 | 0.9619 |
|
64 |
+
| 8.823 | 10.0 | 140 | 3.1568 | 1.0 | 0.9619 |
|
65 |
+
| 8.823 | 11.0 | 154 | 3.1071 | 1.0 | 0.9619 |
|
66 |
+
| 8.823 | 12.0 | 168 | 3.0891 | 1.0 | 0.9619 |
|
67 |
+
| 8.823 | 13.0 | 182 | 3.0588 | 1.0 | 0.9619 |
|
68 |
+
| 8.823 | 14.0 | 196 | 3.0422 | 1.0 | 0.9619 |
|
69 |
+
| 3.0574 | 15.0 | 210 | 3.0388 | 1.0 | 0.9619 |
|
70 |
+
| 3.0574 | 16.0 | 224 | 3.0324 | 1.0 | 0.9619 |
|
71 |
+
| 3.0574 | 17.0 | 238 | 3.0253 | 1.0 | 0.9619 |
|
72 |
+
| 3.0574 | 18.0 | 252 | 3.0100 | 1.0 | 0.9619 |
|
73 |
+
| 3.0574 | 19.0 | 266 | 3.0079 | 1.0 | 0.9619 |
|
74 |
+
| 3.0574 | 20.0 | 280 | 3.0150 | 1.0 | 0.9619 |
|
75 |
+
| 3.0574 | 21.0 | 294 | 3.0033 | 1.0 | 0.9619 |
|
76 |
+
| 2.95 | 22.0 | 308 | 2.9999 | 1.0 | 0.9619 |
|
77 |
+
| 2.95 | 23.0 | 322 | 2.9940 | 1.0 | 0.9619 |
|
78 |
+
| 2.95 | 24.0 | 336 | 2.9982 | 1.0 | 0.9619 |
|
79 |
+
| 2.95 | 25.0 | 350 | 3.0212 | 1.0 | 0.9619 |
|
80 |
+
| 2.95 | 26.0 | 364 | 2.9951 | 1.0 | 0.9619 |
|
81 |
+
| 2.95 | 27.0 | 378 | 2.9893 | 1.0 | 0.9619 |
|
82 |
+
| 2.95 | 28.0 | 392 | 2.9907 | 1.0 | 0.9619 |
|
83 |
+
| 2.9233 | 29.0 | 406 | 2.9889 | 1.0 | 0.9619 |
|
84 |
+
| 2.9233 | 30.0 | 420 | 2.9813 | 1.0 | 0.9619 |
|
85 |
+
| 2.9233 | 31.0 | 434 | 2.9795 | 1.0 | 0.9619 |
|
86 |
+
| 2.9233 | 32.0 | 448 | 2.9633 | 1.0 | 0.9619 |
|
87 |
+
| 2.9233 | 33.0 | 462 | 2.9653 | 1.0 | 0.9585 |
|
88 |
+
| 2.9233 | 34.0 | 476 | 2.9050 | 1.0 | 0.9619 |
|
89 |
+
| 2.9233 | 35.0 | 490 | 2.8806 | 1.0 | 0.9619 |
|
90 |
+
| 2.8852 | 36.0 | 504 | 2.8230 | 1.0 | 0.9619 |
|
91 |
+
| 2.8852 | 37.0 | 518 | 2.7805 | 1.0 | 0.9619 |
|
92 |
+
| 2.8852 | 38.0 | 532 | 2.7044 | 1.0 | 0.9572 |
|
93 |
+
| 2.8852 | 39.0 | 546 | 2.6561 | 1.0 | 0.9559 |
|
94 |
+
| 2.8852 | 40.0 | 560 | 2.5475 | 1.0 | 0.9254 |
|
95 |
+
| 2.8852 | 41.0 | 574 | 2.3336 | 1.0 | 0.7458 |
|
96 |
+
| 2.8852 | 42.0 | 588 | 2.0696 | 1.0 | 0.5468 |
|
97 |
+
| 2.5339 | 43.0 | 602 | 1.7760 | 1.0 | 0.4971 |
|
98 |
+
| 2.5339 | 44.0 | 616 | 1.5433 | 1.0 | 0.4546 |
|
99 |
+
| 2.5339 | 45.0 | 630 | 1.3529 | 1.0 | 0.4067 |
|
100 |
+
| 2.5339 | 46.0 | 644 | 1.2149 | 0.9998 | 0.3834 |
|
101 |
+
| 2.5339 | 47.0 | 658 | 1.0925 | 0.9943 | 0.3578 |
|
102 |
+
| 2.5339 | 48.0 | 672 | 1.0236 | 0.8954 | 0.3129 |
|
103 |
+
| 2.5339 | 49.0 | 686 | 0.9525 | 0.7062 | 0.2623 |
|
104 |
+
| 1.3395 | 50.0 | 700 | 0.8922 | 0.5063 | 0.2201 |
|
105 |
+
| 1.3395 | 51.0 | 714 | 0.8068 | 0.4774 | 0.2115 |
|
106 |
+
| 1.3395 | 52.0 | 728 | 0.7932 | 0.4553 | 0.2076 |
|
107 |
+
| 1.3395 | 53.0 | 742 | 0.7726 | 0.4453 | 0.2066 |
|
108 |
+
| 1.3395 | 54.0 | 756 | 0.7551 | 0.4340 | 0.2027 |
|
109 |
+
| 1.3395 | 55.0 | 770 | 0.7420 | 0.4305 | 0.2039 |
|
110 |
+
| 1.3395 | 56.0 | 784 | 0.7146 | 0.4212 | 0.2008 |
|
111 |
+
| 1.3395 | 57.0 | 798 | 0.6768 | 0.4096 | 0.1957 |
|
112 |
+
| 0.7419 | 58.0 | 812 | 0.6767 | 0.4080 | 0.1962 |
|
113 |
+
| 0.7419 | 59.0 | 826 | 0.6709 | 0.4069 | 0.1971 |
|
114 |
+
| 0.7419 | 60.0 | 840 | 0.6791 | 0.4025 | 0.1967 |
|
115 |
+
| 0.7419 | 61.0 | 854 | 0.6560 | 0.4029 | 0.1938 |
|
116 |
+
| 0.7419 | 62.0 | 868 | 0.6474 | 0.3976 | 0.1939 |
|
117 |
+
| 0.7419 | 63.0 | 882 | 0.6584 | 0.3982 | 0.1941 |
|
118 |
+
| 0.7419 | 64.0 | 896 | 0.6619 | 0.3960 | 0.1938 |
|
119 |
+
| 0.5254 | 65.0 | 910 | 0.6514 | 0.3923 | 0.1936 |
|
120 |
+
| 0.5254 | 66.0 | 924 | 0.6363 | 0.3874 | 0.1915 |
|
121 |
+
| 0.5254 | 67.0 | 938 | 0.6173 | 0.3797 | 0.1900 |
|
122 |
+
| 0.5254 | 68.0 | 952 | 0.6284 | 0.3887 | 0.1918 |
|
123 |
+
| 0.5254 | 69.0 | 966 | 0.6153 | 0.3767 | 0.1897 |
|
124 |
+
| 0.5254 | 70.0 | 980 | 0.6084 | 0.3736 | 0.1879 |
|
125 |
+
| 0.5254 | 71.0 | 994 | 0.6196 | 0.3773 | 0.1900 |
|
126 |
+
| 0.4219 | 72.0 | 1008 | 0.6075 | 0.3730 | 0.1899 |
|
127 |
+
| 0.4219 | 73.0 | 1022 | 0.6017 | 0.3712 | 0.1884 |
|
128 |
+
| 0.4219 | 74.0 | 1036 | 0.5947 | 0.3694 | 0.1872 |
|
129 |
+
| 0.4219 | 75.0 | 1050 | 0.5975 | 0.3696 | 0.1889 |
|
130 |
+
| 0.4219 | 76.0 | 1064 | 0.6020 | 0.3728 | 0.1887 |
|
131 |
+
| 0.4219 | 77.0 | 1078 | 0.5994 | 0.3704 | 0.1892 |
|
132 |
+
| 0.4219 | 78.0 | 1092 | 0.5822 | 0.3716 | 0.1877 |
|
133 |
+
| 0.385 | 79.0 | 1106 | 0.6073 | 0.3742 | 0.1893 |
|
134 |
+
| 0.385 | 80.0 | 1120 | 0.6029 | 0.3728 | 0.1874 |
|
135 |
+
| 0.385 | 81.0 | 1134 | 0.5961 | 0.3700 | 0.1868 |
|
136 |
+
| 0.385 | 82.0 | 1148 | 0.6032 | 0.3702 | 0.1870 |
|
137 |
+
| 0.385 | 83.0 | 1162 | 0.6115 | 0.3722 | 0.1889 |
|
138 |
+
| 0.385 | 84.0 | 1176 | 0.6018 | 0.3690 | 0.1883 |
|
139 |
+
| 0.385 | 85.0 | 1190 | 0.5824 | 0.3665 | 0.1855 |
|
140 |
+
| 0.3463 | 86.0 | 1204 | 0.5985 | 0.3669 | 0.1866 |
|
141 |
+
| 0.3463 | 87.0 | 1218 | 0.5833 | 0.3669 | 0.1861 |
|
142 |
+
| 0.3463 | 88.0 | 1232 | 0.5775 | 0.3637 | 0.1862 |
|
143 |
+
| 0.3463 | 89.0 | 1246 | 0.5747 | 0.3606 | 0.1850 |
|
144 |
+
| 0.3463 | 90.0 | 1260 | 0.5784 | 0.3639 | 0.1851 |
|
145 |
+
| 0.3463 | 91.0 | 1274 | 0.5841 | 0.3604 | 0.1858 |
|
146 |
+
| 0.3463 | 92.0 | 1288 | 0.5762 | 0.3655 | 0.1850 |
|
147 |
+
| 0.3237 | 93.0 | 1302 | 0.5836 | 0.3598 | 0.1854 |
|
148 |
+
| 0.3237 | 94.0 | 1316 | 0.5761 | 0.3588 | 0.1841 |
|
149 |
+
| 0.3237 | 95.0 | 1330 | 0.5822 | 0.3596 | 0.1848 |
|
150 |
+
| 0.3237 | 96.0 | 1344 | 0.5886 | 0.3592 | 0.1850 |
|
151 |
+
| 0.3237 | 97.0 | 1358 | 0.5696 | 0.3574 | 0.1830 |
|
152 |
+
| 0.3237 | 98.0 | 1372 | 0.5794 | 0.3588 | 0.1836 |
|
153 |
+
| 0.3237 | 99.0 | 1386 | 0.5768 | 0.3570 | 0.1837 |
|
154 |
+
| 0.2799 | 100.0 | 1400 | 0.5837 | 0.3578 | 0.1844 |
|
155 |
+
| 0.2799 | 101.0 | 1414 | 0.5697 | 0.3525 | 0.1826 |
|
156 |
+
| 0.2799 | 102.0 | 1428 | 0.5796 | 0.3566 | 0.1834 |
|
157 |
+
| 0.2799 | 103.0 | 1442 | 0.5712 | 0.3549 | 0.1825 |
|
158 |
+
| 0.2799 | 104.0 | 1456 | 0.5796 | 0.3555 | 0.1829 |
|
159 |
+
| 0.2799 | 105.0 | 1470 | 0.5759 | 0.3553 | 0.1835 |
|
160 |
+
| 0.2799 | 106.0 | 1484 | 0.5750 | 0.3562 | 0.1831 |
|
161 |
+
| 0.2799 | 107.0 | 1498 | 0.5650 | 0.3527 | 0.1823 |
|
162 |
+
| 0.2674 | 108.0 | 1512 | 0.5677 | 0.3499 | 0.1823 |
|
163 |
+
| 0.2674 | 109.0 | 1526 | 0.5699 | 0.3541 | 0.1826 |
|
164 |
+
| 0.2674 | 110.0 | 1540 | 0.5779 | 0.3555 | 0.1837 |
|
165 |
+
| 0.2674 | 111.0 | 1554 | 0.5792 | 0.3551 | 0.1834 |
|
166 |
+
| 0.2674 | 112.0 | 1568 | 0.5697 | 0.3574 | 0.1829 |
|
167 |
+
| 0.2674 | 113.0 | 1582 | 0.5852 | 0.3590 | 0.1839 |
|
168 |
+
| 0.2674 | 114.0 | 1596 | 0.5735 | 0.3537 | 0.1829 |
|
169 |
+
| 0.2611 | 115.0 | 1610 | 0.5774 | 0.3545 | 0.1832 |
|
170 |
+
| 0.2611 | 116.0 | 1624 | 0.5836 | 0.3555 | 0.1841 |
|
171 |
+
| 0.2611 | 117.0 | 1638 | 0.5750 | 0.3517 | 0.1832 |
|
172 |
+
| 0.2611 | 118.0 | 1652 | 0.5772 | 0.3521 | 0.1825 |
|
173 |
+
| 0.2611 | 119.0 | 1666 | 0.5793 | 0.3521 | 0.1831 |
|
174 |
+
| 0.2611 | 120.0 | 1680 | 0.5756 | 0.3517 | 0.1828 |
|
175 |
+
| 0.2611 | 121.0 | 1694 | 0.5794 | 0.3517 | 0.1830 |
|
176 |
+
| 0.2476 | 122.0 | 1708 | 0.5719 | 0.3521 | 0.1827 |
|
177 |
+
| 0.2476 | 123.0 | 1722 | 0.5804 | 0.3543 | 0.1830 |
|
178 |
+
| 0.2476 | 124.0 | 1736 | 0.5729 | 0.3539 | 0.1825 |
|
179 |
+
| 0.2476 | 125.0 | 1750 | 0.5874 | 0.3519 | 0.1832 |
|
180 |
+
| 0.2476 | 126.0 | 1764 | 0.5777 | 0.3533 | 0.1826 |
|
181 |
+
| 0.2476 | 127.0 | 1778 | 0.5762 | 0.3531 | 0.1822 |
|
182 |
+
|
183 |
+
|
184 |
+
### Framework versions
|
185 |
+
|
186 |
+
- Transformers 4.28.0
|
187 |
+
- Pytorch 2.4.1+cu121
|
188 |
+
- Datasets 3.2.0
|
189 |
+
- Tokenizers 0.13.3
|