File size: 10,301 Bytes
9878e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e577554
 
 
9878e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-coraa-exp-9
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-coraa-exp-9

This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5553
- Wer: 0.3466
- Cer: 0.1788

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 37.5508       | 1.0   | 14   | 23.1376         | 1.0    | 0.9619 |
| 37.5508       | 2.0   | 28   | 6.5036          | 1.0    | 0.9619 |
| 37.5508       | 3.0   | 42   | 4.3919          | 1.0    | 0.9619 |
| 37.5508       | 4.0   | 56   | 3.9441          | 1.0    | 0.9619 |
| 37.5508       | 5.0   | 70   | 3.7306          | 1.0    | 0.9619 |
| 37.5508       | 6.0   | 84   | 3.5762          | 1.0    | 0.9619 |
| 37.5508       | 7.0   | 98   | 3.4129          | 1.0    | 0.9619 |
| 8.6902        | 8.0   | 112  | 3.2859          | 1.0    | 0.9619 |
| 8.6902        | 9.0   | 126  | 3.2192          | 1.0    | 0.9619 |
| 8.6902        | 10.0  | 140  | 3.1479          | 1.0    | 0.9619 |
| 8.6902        | 11.0  | 154  | 3.1063          | 1.0    | 0.9619 |
| 8.6902        | 12.0  | 168  | 3.0897          | 1.0    | 0.9619 |
| 8.6902        | 13.0  | 182  | 3.0849          | 1.0    | 0.9619 |
| 8.6902        | 14.0  | 196  | 3.0485          | 1.0    | 0.9619 |
| 3.059         | 15.0  | 210  | 3.0496          | 1.0    | 0.9619 |
| 3.059         | 16.0  | 224  | 3.0510          | 1.0    | 0.9619 |
| 3.059         | 17.0  | 238  | 3.0428          | 1.0    | 0.9619 |
| 3.059         | 18.0  | 252  | 3.0331          | 1.0    | 0.9619 |
| 3.059         | 19.0  | 266  | 3.0353          | 1.0    | 0.9619 |
| 3.059         | 20.0  | 280  | 3.0217          | 1.0    | 0.9619 |
| 3.059         | 21.0  | 294  | 3.0107          | 1.0    | 0.9619 |
| 2.9492        | 22.0  | 308  | 3.0068          | 1.0    | 0.9619 |
| 2.9492        | 23.0  | 322  | 2.9950          | 1.0    | 0.9619 |
| 2.9492        | 24.0  | 336  | 2.9896          | 1.0    | 0.9619 |
| 2.9492        | 25.0  | 350  | 2.9687          | 1.0    | 0.9619 |
| 2.9492        | 26.0  | 364  | 2.9474          | 1.0    | 0.9619 |
| 2.9492        | 27.0  | 378  | 2.9414          | 1.0    | 0.9619 |
| 2.9492        | 28.0  | 392  | 2.8425          | 1.0    | 0.9619 |
| 2.8892        | 29.0  | 406  | 2.7813          | 1.0    | 0.9619 |
| 2.8892        | 30.0  | 420  | 2.7270          | 1.0    | 0.9619 |
| 2.8892        | 31.0  | 434  | 2.6645          | 1.0    | 0.9606 |
| 2.8892        | 32.0  | 448  | 2.5593          | 1.0    | 0.9139 |
| 2.8892        | 33.0  | 462  | 2.3230          | 1.0    | 0.7003 |
| 2.8892        | 34.0  | 476  | 1.9706          | 1.0    | 0.5358 |
| 2.8892        | 35.0  | 490  | 1.7085          | 0.9998 | 0.4548 |
| 2.3937        | 36.0  | 504  | 1.4494          | 1.0    | 0.4064 |
| 2.3937        | 37.0  | 518  | 1.2865          | 1.0    | 0.3847 |
| 2.3937        | 38.0  | 532  | 1.1509          | 0.9947 | 0.3659 |
| 2.3937        | 39.0  | 546  | 1.0467          | 0.9031 | 0.3183 |
| 2.3937        | 40.0  | 560  | 0.9832          | 0.5961 | 0.2404 |
| 2.3937        | 41.0  | 574  | 0.8921          | 0.5049 | 0.2223 |
| 2.3937        | 42.0  | 588  | 0.8306          | 0.4687 | 0.2123 |
| 1.0877        | 43.0  | 602  | 0.8017          | 0.4563 | 0.2088 |
| 1.0877        | 44.0  | 616  | 0.7716          | 0.4405 | 0.2046 |
| 1.0877        | 45.0  | 630  | 0.7694          | 0.4407 | 0.2054 |
| 1.0877        | 46.0  | 644  | 0.7451          | 0.4315 | 0.2037 |
| 1.0877        | 47.0  | 658  | 0.7112          | 0.4250 | 0.1996 |
| 1.0877        | 48.0  | 672  | 0.7008          | 0.4116 | 0.1958 |
| 1.0877        | 49.0  | 686  | 0.7140          | 0.4057 | 0.1980 |
| 0.6292        | 50.0  | 700  | 0.7208          | 0.4114 | 0.1988 |
| 0.6292        | 51.0  | 714  | 0.6675          | 0.4033 | 0.1937 |
| 0.6292        | 52.0  | 728  | 0.6650          | 0.4015 | 0.1938 |
| 0.6292        | 53.0  | 742  | 0.6550          | 0.4013 | 0.1938 |
| 0.6292        | 54.0  | 756  | 0.6477          | 0.3990 | 0.1932 |
| 0.6292        | 55.0  | 770  | 0.6362          | 0.3960 | 0.1932 |
| 0.6292        | 56.0  | 784  | 0.6323          | 0.3919 | 0.1930 |
| 0.6292        | 57.0  | 798  | 0.6264          | 0.3870 | 0.1921 |
| 0.4739        | 58.0  | 812  | 0.6290          | 0.3872 | 0.1921 |
| 0.4739        | 59.0  | 826  | 0.6207          | 0.3864 | 0.1925 |
| 0.4739        | 60.0  | 840  | 0.6178          | 0.3858 | 0.1918 |
| 0.4739        | 61.0  | 854  | 0.6217          | 0.3860 | 0.1918 |
| 0.4739        | 62.0  | 868  | 0.6078          | 0.3799 | 0.1900 |
| 0.4739        | 63.0  | 882  | 0.6072          | 0.3781 | 0.1889 |
| 0.4739        | 64.0  | 896  | 0.6068          | 0.3761 | 0.1883 |
| 0.3855        | 65.0  | 910  | 0.5945          | 0.3748 | 0.1870 |
| 0.3855        | 66.0  | 924  | 0.6194          | 0.3799 | 0.1900 |
| 0.3855        | 67.0  | 938  | 0.6044          | 0.3793 | 0.1885 |
| 0.3855        | 68.0  | 952  | 0.5946          | 0.3751 | 0.1880 |
| 0.3855        | 69.0  | 966  | 0.6116          | 0.3714 | 0.1880 |
| 0.3855        | 70.0  | 980  | 0.5877          | 0.3679 | 0.1861 |
| 0.3855        | 71.0  | 994  | 0.5861          | 0.3679 | 0.1863 |
| 0.3302        | 72.0  | 1008 | 0.5805          | 0.3685 | 0.1856 |
| 0.3302        | 73.0  | 1022 | 0.5862          | 0.3714 | 0.1862 |
| 0.3302        | 74.0  | 1036 | 0.5921          | 0.3720 | 0.1866 |
| 0.3302        | 75.0  | 1050 | 0.5692          | 0.3683 | 0.1854 |
| 0.3302        | 76.0  | 1064 | 0.5922          | 0.3702 | 0.1878 |
| 0.3302        | 77.0  | 1078 | 0.6105          | 0.3710 | 0.1883 |
| 0.3302        | 78.0  | 1092 | 0.5873          | 0.3683 | 0.1856 |
| 0.3046        | 79.0  | 1106 | 0.5826          | 0.3681 | 0.1859 |
| 0.3046        | 80.0  | 1120 | 0.5792          | 0.3633 | 0.1845 |
| 0.3046        | 81.0  | 1134 | 0.5738          | 0.3610 | 0.1835 |
| 0.3046        | 82.0  | 1148 | 0.5794          | 0.3625 | 0.1843 |
| 0.3046        | 83.0  | 1162 | 0.5766          | 0.3564 | 0.1829 |
| 0.3046        | 84.0  | 1176 | 0.5745          | 0.3578 | 0.1830 |
| 0.3046        | 85.0  | 1190 | 0.5615          | 0.3555 | 0.1814 |
| 0.2927        | 86.0  | 1204 | 0.5854          | 0.3614 | 0.1828 |
| 0.2927        | 87.0  | 1218 | 0.5818          | 0.3625 | 0.1835 |
| 0.2927        | 88.0  | 1232 | 0.5613          | 0.3578 | 0.1815 |
| 0.2927        | 89.0  | 1246 | 0.5661          | 0.3549 | 0.1813 |
| 0.2927        | 90.0  | 1260 | 0.5795          | 0.3604 | 0.1820 |
| 0.2927        | 91.0  | 1274 | 0.5604          | 0.3521 | 0.1802 |
| 0.2927        | 92.0  | 1288 | 0.5738          | 0.3590 | 0.1822 |
| 0.2576        | 93.0  | 1302 | 0.5658          | 0.3574 | 0.1814 |
| 0.2576        | 94.0  | 1316 | 0.5620          | 0.3511 | 0.1808 |
| 0.2576        | 95.0  | 1330 | 0.5709          | 0.3541 | 0.1810 |
| 0.2576        | 96.0  | 1344 | 0.5675          | 0.3503 | 0.1799 |
| 0.2576        | 97.0  | 1358 | 0.5788          | 0.3549 | 0.1815 |
| 0.2576        | 98.0  | 1372 | 0.5730          | 0.3525 | 0.1810 |
| 0.2576        | 99.0  | 1386 | 0.5694          | 0.3511 | 0.1803 |
| 0.2273        | 100.0 | 1400 | 0.5748          | 0.3527 | 0.1807 |
| 0.2273        | 101.0 | 1414 | 0.5688          | 0.3513 | 0.1797 |
| 0.2273        | 102.0 | 1428 | 0.5767          | 0.3553 | 0.1805 |
| 0.2273        | 103.0 | 1442 | 0.5758          | 0.3529 | 0.1812 |
| 0.2273        | 104.0 | 1456 | 0.5641          | 0.3507 | 0.1793 |
| 0.2273        | 105.0 | 1470 | 0.5628          | 0.3495 | 0.1789 |
| 0.2273        | 106.0 | 1484 | 0.5729          | 0.3466 | 0.1789 |
| 0.2273        | 107.0 | 1498 | 0.5722          | 0.3497 | 0.1798 |
| 0.2181        | 108.0 | 1512 | 0.5553          | 0.3466 | 0.1788 |
| 0.2181        | 109.0 | 1526 | 0.5582          | 0.3484 | 0.1792 |
| 0.2181        | 110.0 | 1540 | 0.5702          | 0.3521 | 0.1802 |
| 0.2181        | 111.0 | 1554 | 0.5691          | 0.3505 | 0.1798 |
| 0.2181        | 112.0 | 1568 | 0.5604          | 0.3470 | 0.1786 |
| 0.2181        | 113.0 | 1582 | 0.5661          | 0.3482 | 0.1795 |
| 0.2181        | 114.0 | 1596 | 0.5683          | 0.3511 | 0.1796 |
| 0.2171        | 115.0 | 1610 | 0.5738          | 0.3509 | 0.1798 |
| 0.2171        | 116.0 | 1624 | 0.5730          | 0.3458 | 0.1793 |
| 0.2171        | 117.0 | 1638 | 0.5705          | 0.3456 | 0.1789 |
| 0.2171        | 118.0 | 1652 | 0.5814          | 0.3466 | 0.1796 |
| 0.2171        | 119.0 | 1666 | 0.5715          | 0.3442 | 0.1791 |
| 0.2171        | 120.0 | 1680 | 0.5720          | 0.3470 | 0.1798 |
| 0.2171        | 121.0 | 1694 | 0.5769          | 0.3470 | 0.1797 |
| 0.1986        | 122.0 | 1708 | 0.5711          | 0.3464 | 0.1792 |
| 0.1986        | 123.0 | 1722 | 0.5728          | 0.3442 | 0.1790 |
| 0.1986        | 124.0 | 1736 | 0.5668          | 0.3450 | 0.1783 |
| 0.1986        | 125.0 | 1750 | 0.5855          | 0.3484 | 0.1797 |
| 0.1986        | 126.0 | 1764 | 0.5667          | 0.3427 | 0.1783 |
| 0.1986        | 127.0 | 1778 | 0.5711          | 0.3460 | 0.1789 |
| 0.1986        | 128.0 | 1792 | 0.5682          | 0.3444 | 0.1781 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3