Commit
·
ad8bf35
1
Parent(s):
d222829
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-xlsr-1b-mecita-portuguese-all-text-a_coisa-os_morcegos
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-xlsr-1b-mecita-portuguese-all-text-a_coisa-os_morcegos
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2131
|
20 |
+
- Wer: 0.0825
|
21 |
+
- Cer: 0.0265
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 100
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
55 |
+
| 25.5905 | 1.0 | 79 | 0.4495 | 0.2580 | 0.0734 |
|
56 |
+
| 3.1482 | 2.0 | 158 | 0.2479 | 0.1204 | 0.0380 |
|
57 |
+
| 0.4247 | 3.0 | 237 | 0.2347 | 0.1025 | 0.0345 |
|
58 |
+
| 0.3136 | 4.0 | 316 | 0.2044 | 0.1017 | 0.0322 |
|
59 |
+
| 0.3136 | 5.0 | 395 | 0.1906 | 0.0930 | 0.0296 |
|
60 |
+
| 0.2985 | 6.0 | 474 | 0.2050 | 0.0963 | 0.0311 |
|
61 |
+
| 0.2413 | 7.0 | 553 | 0.2025 | 0.0971 | 0.0309 |
|
62 |
+
| 0.2267 | 8.0 | 632 | 0.2006 | 0.0885 | 0.0291 |
|
63 |
+
| 0.224 | 9.0 | 711 | 0.1991 | 0.0917 | 0.0291 |
|
64 |
+
| 0.224 | 10.0 | 790 | 0.1881 | 0.0885 | 0.0281 |
|
65 |
+
| 0.1864 | 11.0 | 869 | 0.1841 | 0.0893 | 0.0278 |
|
66 |
+
| 0.1951 | 12.0 | 948 | 0.1809 | 0.0895 | 0.0282 |
|
67 |
+
| 0.1794 | 13.0 | 1027 | 0.1923 | 0.0833 | 0.0280 |
|
68 |
+
| 0.1621 | 14.0 | 1106 | 0.1949 | 0.0857 | 0.0277 |
|
69 |
+
| 0.1621 | 15.0 | 1185 | 0.1929 | 0.0817 | 0.0266 |
|
70 |
+
| 0.1695 | 16.0 | 1264 | 0.1907 | 0.0839 | 0.0270 |
|
71 |
+
| 0.1528 | 17.0 | 1343 | 0.1839 | 0.0906 | 0.0286 |
|
72 |
+
| 0.1592 | 18.0 | 1422 | 0.1866 | 0.0903 | 0.0281 |
|
73 |
+
| 0.1519 | 19.0 | 1501 | 0.2031 | 0.0857 | 0.0275 |
|
74 |
+
| 0.1519 | 20.0 | 1580 | 0.1948 | 0.0860 | 0.0278 |
|
75 |
+
| 0.1257 | 21.0 | 1659 | 0.1850 | 0.0860 | 0.0262 |
|
76 |
+
| 0.1288 | 22.0 | 1738 | 0.1774 | 0.0844 | 0.0266 |
|
77 |
+
| 0.115 | 23.0 | 1817 | 0.1960 | 0.0844 | 0.0265 |
|
78 |
+
| 0.115 | 24.0 | 1896 | 0.1832 | 0.0825 | 0.0258 |
|
79 |
+
| 0.1223 | 25.0 | 1975 | 0.1920 | 0.0828 | 0.0261 |
|
80 |
+
| 0.1175 | 26.0 | 2054 | 0.1951 | 0.0803 | 0.0260 |
|
81 |
+
| 0.1051 | 27.0 | 2133 | 0.1996 | 0.0825 | 0.0266 |
|
82 |
+
| 0.1033 | 28.0 | 2212 | 0.2152 | 0.0847 | 0.0274 |
|
83 |
+
| 0.1033 | 29.0 | 2291 | 0.2082 | 0.0879 | 0.0277 |
|
84 |
+
| 0.0961 | 30.0 | 2370 | 0.2153 | 0.0855 | 0.0274 |
|
85 |
+
| 0.1003 | 31.0 | 2449 | 0.2044 | 0.0903 | 0.0288 |
|
86 |
+
| 0.1129 | 32.0 | 2528 | 0.2050 | 0.0855 | 0.0268 |
|
87 |
+
| 0.0939 | 33.0 | 2607 | 0.2028 | 0.0860 | 0.0271 |
|
88 |
+
| 0.0939 | 34.0 | 2686 | 0.2031 | 0.0847 | 0.0274 |
|
89 |
+
| 0.0846 | 35.0 | 2765 | 0.2046 | 0.0822 | 0.0269 |
|
90 |
+
| 0.083 | 36.0 | 2844 | 0.2094 | 0.0825 | 0.0265 |
|
91 |
+
| 0.0844 | 37.0 | 2923 | 0.2176 | 0.0820 | 0.0268 |
|
92 |
+
| 0.0829 | 38.0 | 3002 | 0.2082 | 0.0817 | 0.0267 |
|
93 |
+
| 0.0829 | 39.0 | 3081 | 0.2200 | 0.0893 | 0.0286 |
|
94 |
+
| 0.103 | 40.0 | 3160 | 0.2102 | 0.0841 | 0.0276 |
|
95 |
+
| 0.0728 | 41.0 | 3239 | 0.2143 | 0.0817 | 0.0271 |
|
96 |
+
| 0.079 | 42.0 | 3318 | 0.2131 | 0.0825 | 0.0265 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.28.0
|
102 |
+
- Pytorch 2.2.1+cu121
|
103 |
+
- Datasets 2.17.0
|
104 |
+
- Tokenizers 0.13.3
|