--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-1b-mecita-portuguese-all-text-protecao_aos_pandas results: [] --- # wav2vec2-xlsr-1b-mecita-portuguese-all-text-protecao_aos_pandas This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1881 - Wer: 0.1139 - Cer: 0.0303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 13.7229 | 0.93 | 7 | 4.8592 | 1.0 | 0.9996 | | 13.7229 | 2.0 | 15 | 3.0023 | 1.0 | 1.0 | | 13.7229 | 2.93 | 22 | 2.9290 | 1.0 | 1.0 | | 13.7229 | 4.0 | 30 | 2.9842 | 1.0 | 1.0 | | 13.7229 | 4.93 | 37 | 2.8453 | 1.0 | 1.0 | | 13.7229 | 6.0 | 45 | 2.8120 | 1.0 | 1.0 | | 13.7229 | 6.93 | 52 | 2.8162 | 1.0 | 1.0 | | 13.7229 | 8.0 | 60 | 2.7843 | 1.0 | 1.0 | | 13.7229 | 8.93 | 67 | 2.7823 | 1.0 | 1.0 | | 13.7229 | 10.0 | 75 | 2.7434 | 1.0 | 1.0 | | 13.7229 | 10.93 | 82 | 2.6364 | 1.0 | 1.0 | | 13.7229 | 12.0 | 90 | 2.3797 | 0.9876 | 0.9861 | | 13.7229 | 12.93 | 97 | 1.9516 | 0.9950 | 0.9771 | | 3.3197 | 14.0 | 105 | 1.5396 | 1.0 | 0.7474 | | 3.3197 | 14.93 | 112 | 1.1038 | 0.9950 | 0.4273 | | 3.3197 | 16.0 | 120 | 0.6536 | 0.6733 | 0.1691 | | 3.3197 | 16.93 | 127 | 0.4087 | 0.3218 | 0.0729 | | 3.3197 | 18.0 | 135 | 0.3119 | 0.2252 | 0.0561 | | 3.3197 | 18.93 | 142 | 0.2720 | 0.1757 | 0.0479 | | 3.3197 | 20.0 | 150 | 0.2405 | 0.1584 | 0.0413 | | 3.3197 | 20.93 | 157 | 0.2365 | 0.1584 | 0.0409 | | 3.3197 | 22.0 | 165 | 0.2281 | 0.1510 | 0.0397 | | 3.3197 | 22.93 | 172 | 0.1989 | 0.1361 | 0.0360 | | 3.3197 | 24.0 | 180 | 0.2051 | 0.1287 | 0.0360 | | 3.3197 | 24.93 | 187 | 0.2265 | 0.1287 | 0.0356 | | 3.3197 | 26.0 | 195 | 0.2203 | 0.1287 | 0.0377 | | 0.5589 | 26.93 | 202 | 0.2181 | 0.1213 | 0.0340 | | 0.5589 | 28.0 | 210 | 0.2006 | 0.1238 | 0.0336 | | 0.5589 | 28.93 | 217 | 0.1860 | 0.1213 | 0.0332 | | 0.5589 | 30.0 | 225 | 0.1772 | 0.1114 | 0.0303 | | 0.5589 | 30.93 | 232 | 0.1914 | 0.1238 | 0.0323 | | 0.5589 | 32.0 | 240 | 0.1997 | 0.1238 | 0.0323 | | 0.5589 | 32.93 | 247 | 0.1947 | 0.1262 | 0.0340 | | 0.5589 | 34.0 | 255 | 0.2056 | 0.1213 | 0.0327 | | 0.5589 | 34.93 | 262 | 0.1985 | 0.1213 | 0.0332 | | 0.5589 | 36.0 | 270 | 0.2016 | 0.1213 | 0.0327 | | 0.5589 | 36.93 | 277 | 0.1941 | 0.1139 | 0.0311 | | 0.5589 | 38.0 | 285 | 0.1824 | 0.1238 | 0.0319 | | 0.5589 | 38.93 | 292 | 0.1822 | 0.1089 | 0.0295 | | 0.1503 | 40.0 | 300 | 0.1969 | 0.1163 | 0.0311 | | 0.1503 | 40.93 | 307 | 0.1996 | 0.1163 | 0.0295 | | 0.1503 | 42.0 | 315 | 0.1880 | 0.1089 | 0.0295 | | 0.1503 | 42.93 | 322 | 0.2017 | 0.1312 | 0.0344 | | 0.1503 | 44.0 | 330 | 0.1914 | 0.1163 | 0.0327 | | 0.1503 | 44.93 | 337 | 0.1935 | 0.1163 | 0.0332 | | 0.1503 | 46.0 | 345 | 0.1967 | 0.1139 | 0.0319 | | 0.1503 | 46.93 | 352 | 0.1913 | 0.1064 | 0.0299 | | 0.1503 | 48.0 | 360 | 0.1994 | 0.1114 | 0.0303 | | 0.1503 | 48.93 | 367 | 0.1883 | 0.1089 | 0.0291 | | 0.1503 | 50.0 | 375 | 0.1881 | 0.1139 | 0.0303 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.13.3