Muennighoff
commited on
Commit
·
def21c3
1
Parent(s):
5cd5354
Add
Browse files- .gitattributes +1 -0
- added_tokens.json +10 -0
- config.json +29 -0
- config_molmoe.py +87 -0
- convert_to_hf.py +89 -0
- generation_config.json +6 -0
- image_preprocessing_molmo.py +569 -0
- modeling_molmoe.py +0 -0
- preprocessing_molmo.py +175 -0
- preprocessor_config.json +32 -0
- processor_config.json +6 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +4 -0
- tokenizer.json +0 -0
- tokenizer_config.json +238 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<im_col>": 151649,
|
3 |
+
"<im_end>": 151647,
|
4 |
+
"<im_patch>": 151648,
|
5 |
+
"<im_start>": 151646,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|im_end|>": 151645,
|
8 |
+
"<|im_start|>": 151644,
|
9 |
+
"<|image|>": 151650
|
10 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MOLMoEForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config_molmoe.MolmoeConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_molmoe.MOLMoEForCausalLM"
|
8 |
+
},
|
9 |
+
"clip_qkv": null,
|
10 |
+
"embedding_size": 152064,
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1024,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"model_type": "molmoe",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 16,
|
19 |
+
"num_key_value_heads": 16,
|
20 |
+
"qkv_bias": false,
|
21 |
+
"rope_theta": 10000.0,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.43.3",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_position_ids": true,
|
27 |
+
"vocab_size": 50304,
|
28 |
+
"weight_tying": false
|
29 |
+
}
|
config_molmoe.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
def config_to_moe_args(config):
|
7 |
+
from megablocks.layers.arguments import Arguments as MoEArgs
|
8 |
+
|
9 |
+
kwargs = {
|
10 |
+
"activation_fn": F.silu,
|
11 |
+
"mlp_type": "glu" if "glu" in config.activation_type.lower() else "mlp",
|
12 |
+
"mlp_impl": "sparse",
|
13 |
+
"hidden_size": config.hidden_size,
|
14 |
+
"ffn_hidden_size": config.intermediate_size,
|
15 |
+
"moe_num_experts": config.moe_num_experts,
|
16 |
+
"num_layers": config.num_hidden_layers,
|
17 |
+
# Handled by FSDP (https://github.com/databricks/megablocks/issues/57#issuecomment-1854594483)
|
18 |
+
"moe_weight_parallelism": False,
|
19 |
+
"moe_expert_model_parallelism": False,
|
20 |
+
"moe_top_k": config.moe_top_k,
|
21 |
+
# "moe_loss_weight": config.moe_loss_weight,
|
22 |
+
# "device": config.init_device,
|
23 |
+
# Handled by FSDP
|
24 |
+
"bf16": False,
|
25 |
+
"fp16": False,
|
26 |
+
"bias": False,
|
27 |
+
"return_bias": False,
|
28 |
+
}
|
29 |
+
|
30 |
+
return MoEArgs(**kwargs)
|
31 |
+
|
32 |
+
class MolmoeConfig(PretrainedConfig):
|
33 |
+
model_type = "molmoe"
|
34 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vocab_size=50304,
|
39 |
+
embedding_size=50304,
|
40 |
+
hidden_size=4096,
|
41 |
+
intermediate_size=11008,
|
42 |
+
num_hidden_layers=32,
|
43 |
+
num_attention_heads=32,
|
44 |
+
num_key_value_heads=None,
|
45 |
+
max_position_embeddings=2048,
|
46 |
+
initializer_range=0.02,
|
47 |
+
use_cache=True,
|
48 |
+
layer_norm_eps: float = 1e-5,
|
49 |
+
rope_theta=10000.0,
|
50 |
+
clip_qkv=None,
|
51 |
+
qkv_bias: bool = False,
|
52 |
+
weight_tying: bool = False,
|
53 |
+
use_position_ids: bool=True,
|
54 |
+
tie_word_embeddings: bool=True,
|
55 |
+
moe_num_experts: int = 64,
|
56 |
+
moe_top_k: int = 8,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
self.vocab_size = vocab_size
|
60 |
+
self.embedding_size = embedding_size
|
61 |
+
self.max_position_embeddings = max_position_embeddings
|
62 |
+
self.hidden_size = hidden_size
|
63 |
+
self.intermediate_size = intermediate_size
|
64 |
+
self.num_hidden_layers = num_hidden_layers
|
65 |
+
self.num_attention_heads = num_attention_heads
|
66 |
+
self.layer_norm_eps = layer_norm_eps
|
67 |
+
self.weight_tying = weight_tying
|
68 |
+
self.use_position_ids = use_position_ids
|
69 |
+
|
70 |
+
# for backward compatibility
|
71 |
+
if num_key_value_heads is None:
|
72 |
+
num_key_value_heads = num_attention_heads
|
73 |
+
|
74 |
+
self.num_key_value_heads = num_key_value_heads
|
75 |
+
self.initializer_range = initializer_range
|
76 |
+
self.use_cache = use_cache
|
77 |
+
self.rope_theta = rope_theta
|
78 |
+
self.clip_qkv = clip_qkv
|
79 |
+
self.qkv_bias = qkv_bias
|
80 |
+
self.tie_word_embeddings = tie_word_embeddings
|
81 |
+
|
82 |
+
super().__init__(
|
83 |
+
tie_word_embeddings=tie_word_embeddings,
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
|
87 |
+
MolmoeConfig.register_for_auto_class()
|
convert_to_hf.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from hf_molmo.config_molmo import MolmoConfig
|
8 |
+
from hf_molmo.image_preprocessing_molmo import MolmoImageProcessor
|
9 |
+
from hf_molmo.modelling_molmo import MOLMoForCausalLM
|
10 |
+
from hf_molmo.preprocessing_molmo import MolmoProcessor
|
11 |
+
from olmo import ModelConfig
|
12 |
+
from olmo.mm_data.data_utils import build_tokenizer
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
def write_config(checkpoint_dir: str, output_dir: str):
|
18 |
+
# save config as HF config
|
19 |
+
|
20 |
+
logger.info(f"Loading checkpoint from {checkpoint_dir}")
|
21 |
+
|
22 |
+
config_path = os.path.join(checkpoint_dir, "config.yaml")
|
23 |
+
model_config = ModelConfig.load(config_path, key="model")
|
24 |
+
config_kwargs = model_config.asdict()
|
25 |
+
config_kwargs["use_cache"] = True
|
26 |
+
config_kwargs["vit_load_path"] = None
|
27 |
+
config_kwargs["llm_load_path"] = None
|
28 |
+
config = MolmoConfig(
|
29 |
+
vocab_size=model_config.vocab_size,
|
30 |
+
embedding_size=model_config.embedding_size,
|
31 |
+
hidden_size=model_config.d_model,
|
32 |
+
intermediate_size=model_config.mlp_hidden_size,
|
33 |
+
num_hidden_layers=model_config.n_layers,
|
34 |
+
num_attention_heads=model_config.n_heads,
|
35 |
+
num_key_value_heads=model_config.n_kv_heads,
|
36 |
+
max_position_embeddings=model_config.max_position_embeddings or model_config.max_sequence_length,
|
37 |
+
initializer_range=model_config.initializer_range,
|
38 |
+
use_cache=True,
|
39 |
+
layer_norm_eps=model_config.layer_norm_eps,
|
40 |
+
rope_theta=model_config.rope_theta,
|
41 |
+
clip_qkv=model_config.clip_qkv,
|
42 |
+
qkv_bias=model_config.qkv_bias,
|
43 |
+
weight_tying=model_config.weight_tying,
|
44 |
+
use_position_ids=True,
|
45 |
+
tie_word_embeddings=False
|
46 |
+
)
|
47 |
+
|
48 |
+
logger.info(f"Saving HF-compatible config to {os.path.join(checkpoint_dir, 'config.json')}")
|
49 |
+
config.save_pretrained(output_dir)
|
50 |
+
|
51 |
+
preprocessor = MolmoProcessor(
|
52 |
+
MolmoImageProcessor(
|
53 |
+
max_crops=model_config.max_crops
|
54 |
+
), # FIXME now just assumes everything if fixed
|
55 |
+
build_tokenizer(model_config.tokenizer.identifier.split("m:")[1]).tokenizer
|
56 |
+
)
|
57 |
+
preprocessor.save_pretrained(output_dir)
|
58 |
+
|
59 |
+
|
60 |
+
def write_model(checkpoint_dir: str, output_dir: str, ignore_olmo_compatibility: bool = False):
|
61 |
+
# For device_map = "auto", etc. the models are loaded in a way that start_prefix is not computed correctly.
|
62 |
+
# So, we explicitly store the model with the expected prefix.
|
63 |
+
old_model_path = os.path.join(checkpoint_dir, "model.pt")
|
64 |
+
new_model_path = os.path.join(output_dir, "pytorch_model.bin")
|
65 |
+
|
66 |
+
state_dict = torch.load(old_model_path)
|
67 |
+
new_state_dict = {f"{MOLMoForCausalLM.base_model_prefix}.{key}": val for key, val in state_dict.items()}
|
68 |
+
torch.save(new_state_dict, new_model_path)
|
69 |
+
|
70 |
+
|
71 |
+
def convert_checkpoint(checkpoint_dir: str, output_dir: str):
|
72 |
+
os.makedirs(output_dir, exist_ok=True)
|
73 |
+
write_config(checkpoint_dir, output_dir)
|
74 |
+
write_model(checkpoint_dir, output_dir)
|
75 |
+
|
76 |
+
|
77 |
+
def main():
|
78 |
+
parser = argparse.ArgumentParser(
|
79 |
+
description="Adds a config.json to the checkpoint directory, and creates pytorch_model.bin, "
|
80 |
+
"making it easier to load weights as HF models."
|
81 |
+
)
|
82 |
+
parser.add_argument("checkpoint_dir")
|
83 |
+
parser.add_argument("output_dir")
|
84 |
+
args = parser.parse_args()
|
85 |
+
convert_checkpoint(args.checkpoint_dir, args.output_dir)
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
main()
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 50279,
|
4 |
+
"pad_token_id": 1,
|
5 |
+
"transformers_version": "4.43.0.dev0"
|
6 |
+
}
|
image_preprocessing_molmo.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for Molmo"""
|
2 |
+
from typing import List, Optional, Union, Mapping
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import einops
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms
|
8 |
+
from torchvision.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms.functional import convert_image_dtype
|
10 |
+
|
11 |
+
from transformers.image_utils import (
|
12 |
+
OPENAI_CLIP_MEAN,
|
13 |
+
OPENAI_CLIP_STD,
|
14 |
+
ImageInput,
|
15 |
+
is_valid_image,
|
16 |
+
)
|
17 |
+
from transformers.processing_utils import ImagesKwargs
|
18 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
19 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
26 |
+
"""
|
27 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
31 |
+
The input image.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
list: A list of images.
|
35 |
+
"""
|
36 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
37 |
+
return [img for img_list in images for img in img_list]
|
38 |
+
|
39 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
40 |
+
return images
|
41 |
+
|
42 |
+
elif is_valid_image(images):
|
43 |
+
return [images]
|
44 |
+
|
45 |
+
raise ValueError(f"Could not make batched images from {images}")
|
46 |
+
|
47 |
+
|
48 |
+
def pad_to_bounding_box(
|
49 |
+
image, offset_height, offset_width, target_height,
|
50 |
+
target_width, value=0
|
51 |
+
):
|
52 |
+
height, width = image.shape[:2]
|
53 |
+
after_padding_width = target_width - offset_width - width
|
54 |
+
after_padding_height = target_height - offset_height - height
|
55 |
+
return np.pad(image, [
|
56 |
+
[offset_height, after_padding_height],
|
57 |
+
[offset_width, after_padding_width],
|
58 |
+
[0, 0]
|
59 |
+
], constant_values=value)
|
60 |
+
|
61 |
+
|
62 |
+
def normalize_image(image, offset, scale):
|
63 |
+
image -= np.array(offset, dtype=np.float32)[None, None, :]
|
64 |
+
image /= np.array(scale, dtype=np.float32)[None, None, :]
|
65 |
+
return image
|
66 |
+
|
67 |
+
|
68 |
+
def resize_and_pad(
|
69 |
+
image,
|
70 |
+
desired_output_size,
|
71 |
+
resize_method=InterpolationMode.BILINEAR,
|
72 |
+
pad_value=0,
|
73 |
+
normalize=True,
|
74 |
+
image_mean=OPENAI_CLIP_MEAN,
|
75 |
+
image_std=OPENAI_CLIP_STD,
|
76 |
+
):
|
77 |
+
desired_height, desired_width = desired_output_size
|
78 |
+
height, width = image.shape[:2]
|
79 |
+
|
80 |
+
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
|
81 |
+
# the results after rounding.
|
82 |
+
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
|
83 |
+
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
|
84 |
+
image_scale = min(image_scale_x, image_scale_y)
|
85 |
+
scaled_height = int(np.array(height, np.float32) * image_scale)
|
86 |
+
scaled_width = int(np.array(width, np.float32) * image_scale)
|
87 |
+
|
88 |
+
# if resize_method == "tensorflow":
|
89 |
+
# FIXME remove
|
90 |
+
import tensorflow as tf
|
91 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
92 |
+
image = tf.image.resize(
|
93 |
+
image,
|
94 |
+
[scaled_height, scaled_width],
|
95 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
96 |
+
antialias=True,
|
97 |
+
)
|
98 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
99 |
+
image = image.numpy()
|
100 |
+
# else:
|
101 |
+
# image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
102 |
+
# image = convert_image_dtype(image) # resize in flaot32
|
103 |
+
# image = torchvision.transforms.Resize(
|
104 |
+
# [scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
105 |
+
# )(image)
|
106 |
+
# image = torch.clip(image, 0.0, 1.0)
|
107 |
+
# image = torch.permute(image, [1, 2, 0]).numpy()
|
108 |
+
|
109 |
+
top_pad = (desired_height - scaled_height) // 2
|
110 |
+
left_pad = (desired_width - scaled_width) // 2
|
111 |
+
padding = [
|
112 |
+
[top_pad, desired_height - scaled_height - top_pad],
|
113 |
+
[left_pad, desired_width - scaled_width - left_pad],
|
114 |
+
[0, 0]
|
115 |
+
]
|
116 |
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
117 |
+
image = np.pad(image, padding, constant_values=pad_value)
|
118 |
+
if normalize:
|
119 |
+
image = normalize_image(image, offset=image_mean, scale=image_std)
|
120 |
+
return image, image_mask
|
121 |
+
|
122 |
+
|
123 |
+
def select_tiling(h, w, patch_size, max_num_patches):
|
124 |
+
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
125 |
+
original_size = np.stack([h, w]) # [1, 2]
|
126 |
+
original_res = h * w
|
127 |
+
tilings = []
|
128 |
+
for i in range(1, max_num_patches+1):
|
129 |
+
for j in range(1, max_num_patches+1):
|
130 |
+
if i*j <= max_num_patches:
|
131 |
+
tilings.append((i, j))
|
132 |
+
# sort so argmin and argmax favour smaller tilings in the event of a tie
|
133 |
+
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
|
134 |
+
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
|
135 |
+
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
|
136 |
+
|
137 |
+
# How much we would need to scale the image to fit exactly in each tiling
|
138 |
+
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
|
139 |
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
|
140 |
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
|
141 |
+
if np.all(required_scale < 1):
|
142 |
+
# We are forced to downscale, so try to minimize the amount of downscaling
|
143 |
+
ix = np.argmax(required_scale)
|
144 |
+
else:
|
145 |
+
# Pick the resolution that required the least upscaling so that it most closely fits the image
|
146 |
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
147 |
+
ix = np.argmin(required_scale)
|
148 |
+
return candidate_tilings[ix]
|
149 |
+
|
150 |
+
|
151 |
+
class MolmoImagesKwargs(ImagesKwargs, total=False):
|
152 |
+
max_crops: Optional[int]
|
153 |
+
overlap_margins: Optional[List[int]]
|
154 |
+
base_image_input_size: Optional[List[int]]
|
155 |
+
image_token_length_w: Optional[int]
|
156 |
+
image_token_length_h: Optional[int]
|
157 |
+
image_patch_size: Optional[int]
|
158 |
+
image_padding_mask: Optional[bool]
|
159 |
+
|
160 |
+
|
161 |
+
class MolmoImageProcessor(BaseImageProcessor):
|
162 |
+
"""Preprocess images and multi-model inputs"""
|
163 |
+
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
max_crops: int = 12,
|
167 |
+
overlap_margins: List[int] = (4, 4),
|
168 |
+
base_image_input_size: List[int] = (336, 336),
|
169 |
+
image_token_length_w: int = 12,
|
170 |
+
image_token_length_h: int = 12,
|
171 |
+
image_patch_size: int = 14,
|
172 |
+
image_padding_mask: bool = True,
|
173 |
+
do_normalize: bool = True,
|
174 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
175 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
176 |
+
**kwargs,
|
177 |
+
):
|
178 |
+
super().__init__(**kwargs)
|
179 |
+
self.max_crops = max_crops
|
180 |
+
self.overlap_margins = overlap_margins
|
181 |
+
self.base_image_input_size = base_image_input_size
|
182 |
+
self.image_token_length_w = image_token_length_w
|
183 |
+
self.image_token_length_h = image_token_length_h
|
184 |
+
self.image_patch_size = image_patch_size
|
185 |
+
self.image_padding_mask = image_padding_mask
|
186 |
+
self.do_normalize = do_normalize
|
187 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
188 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
189 |
+
|
190 |
+
def image_to_patches_and_tokens(
|
191 |
+
self,
|
192 |
+
image: ImageInput,
|
193 |
+
image_patch_token_id: int,
|
194 |
+
image_col_token_id: int,
|
195 |
+
image_start_token_id: int,
|
196 |
+
image_end_token_id: int,
|
197 |
+
max_crops: Optional[int] = None,
|
198 |
+
overlap_margins: Optional[List[int]] = None,
|
199 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
200 |
+
image_token_length_w: Optional[int] = None,
|
201 |
+
image_token_length_h: Optional[int] = None,
|
202 |
+
image_patch_size: Optional[int] = None,
|
203 |
+
):
|
204 |
+
"""Preprocesses an image
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
208 |
+
change between images but the other dimension are fixed
|
209 |
+
tokens: (n_tokens,) int32 tokens, pad tokens indicating where to insert the
|
210 |
+
patch features, might include other special tokens as well
|
211 |
+
patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
|
212 |
+
into the `tokens`, negative values indicates patches features to exclude
|
213 |
+
padding_mask: (n_crops, n_patches) what percent of each crop is padding, be None
|
214 |
+
if the image mask is not being used.
|
215 |
+
"""
|
216 |
+
if isinstance(base_image_input_size, int):
|
217 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
218 |
+
|
219 |
+
base_image_input_d = image_patch_size
|
220 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
221 |
+
image_base_patch_w = base_image_input_size[1] // base_image_input_d
|
222 |
+
image_base_patch_h = base_image_input_size[0] // base_image_input_d
|
223 |
+
|
224 |
+
original_image_h, original_image_w = image.shape[:2]
|
225 |
+
crop_size = base_image_input_size[0]
|
226 |
+
|
227 |
+
# Discard this many patches from the (left/top, right/bottom) of crops
|
228 |
+
left_margin, right_margin = overlap_margins
|
229 |
+
# left_margin, right_margin = 2, 2
|
230 |
+
assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
|
231 |
+
total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
|
232 |
+
crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
|
233 |
+
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
|
234 |
+
crop_window_size = crop_window_patches * base_image_input_d
|
235 |
+
tiling = select_tiling(
|
236 |
+
original_image_h - total_margin_pixels,
|
237 |
+
original_image_w - total_margin_pixels,
|
238 |
+
crop_window_size,
|
239 |
+
max_crops
|
240 |
+
)
|
241 |
+
src, img_mask = resize_and_pad(
|
242 |
+
image,
|
243 |
+
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
|
244 |
+
)
|
245 |
+
|
246 |
+
# Now we have to split the image into crops, while keeping track of how each patch in the
|
247 |
+
# each crop should be ordered in the global image, this require a lot of tricky booking
|
248 |
+
n_crops = tiling[0] * tiling[1]
|
249 |
+
patches_arr = []
|
250 |
+
mask_arr = []
|
251 |
+
patch_ordering_arr = []
|
252 |
+
|
253 |
+
# We assume 2x2 pooling, but can allow padding the right/bottom with extra
|
254 |
+
# patches if the number of patches per side is not even
|
255 |
+
assert (crop_patches+1)//2 == image_token_length_h
|
256 |
+
assert (crop_patches+1)//2 == image_token_length_w
|
257 |
+
on = 0
|
258 |
+
on_patch = 0
|
259 |
+
for i in range(tiling[0]):
|
260 |
+
y0 = i*crop_window_size
|
261 |
+
if i == 0:
|
262 |
+
crop_y0 = 0
|
263 |
+
else:
|
264 |
+
crop_y0 = left_margin // 2
|
265 |
+
|
266 |
+
crop_h = image_base_patch_h - (right_margin + left_margin)
|
267 |
+
if i == 0:
|
268 |
+
crop_h += left_margin
|
269 |
+
if i == (tiling[0]-1):
|
270 |
+
crop_h += right_margin
|
271 |
+
for j in range(tiling[1]):
|
272 |
+
x0 = j*crop_window_size
|
273 |
+
if j == 0:
|
274 |
+
crop_x0 = 0
|
275 |
+
else:
|
276 |
+
crop_x0 = left_margin // 2
|
277 |
+
|
278 |
+
crop_w = image_base_patch_w - (right_margin + left_margin)
|
279 |
+
if j == 0:
|
280 |
+
crop_w += left_margin
|
281 |
+
if j == (tiling[1]-1):
|
282 |
+
crop_w += right_margin
|
283 |
+
|
284 |
+
pooled_w = (crop_w + 1) // 2
|
285 |
+
pooled_h = (crop_h + 1) // 2
|
286 |
+
patch_ordering_arr.append(
|
287 |
+
pad_to_bounding_box(
|
288 |
+
np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
|
289 |
+
crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
|
290 |
+
)[:, :, 0]
|
291 |
+
)
|
292 |
+
patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
|
293 |
+
mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
|
294 |
+
|
295 |
+
on += pooled_h*pooled_w
|
296 |
+
on_patch += 1
|
297 |
+
patches = np.stack(patches_arr)
|
298 |
+
patch_ordering = np.stack(patch_ordering_arr)
|
299 |
+
img_mask = np.stack(mask_arr)
|
300 |
+
|
301 |
+
# Switch to [n_crops, n_patches, pixels_per_patch] format
|
302 |
+
image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
|
303 |
+
patches = einops.rearrange(
|
304 |
+
patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
|
305 |
+
dh=base_image_input_d,
|
306 |
+
dw=base_image_input_d,
|
307 |
+
h=image_base_patch_h,
|
308 |
+
w=image_base_patch_w
|
309 |
+
)
|
310 |
+
img_mask = einops.rearrange(
|
311 |
+
img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
|
312 |
+
dh=base_image_input_d,
|
313 |
+
dw=base_image_input_d,
|
314 |
+
h=image_base_patch_h,
|
315 |
+
w=image_base_patch_w
|
316 |
+
)
|
317 |
+
|
318 |
+
img_mask = img_mask.astype(np.float32).mean(axis=-1)
|
319 |
+
patch_ordering = np.reshape(patch_ordering, [-1])
|
320 |
+
valid = patch_ordering >= 0
|
321 |
+
|
322 |
+
# Transpose order, to get left-to-right order instead of crop-by-crop order
|
323 |
+
patch_ordering_rh = np.reshape(
|
324 |
+
patch_ordering,
|
325 |
+
[tiling[0], tiling[1], image_token_length_h, image_token_length_w]
|
326 |
+
)
|
327 |
+
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
|
328 |
+
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
|
329 |
+
|
330 |
+
# The transpose will screw up which patches are masked, project the
|
331 |
+
# new order into sparse structure of `patch_ordering` to fix this
|
332 |
+
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
|
333 |
+
|
334 |
+
# Now build the output tokens
|
335 |
+
h = tiling[0] * crop_window_patches + (right_margin+left_margin)
|
336 |
+
w = tiling[1] * crop_window_patches + (right_margin+left_margin)
|
337 |
+
per_row = np.full(
|
338 |
+
((w+1)//2,),
|
339 |
+
image_patch_token_id,
|
340 |
+
)
|
341 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
342 |
+
|
343 |
+
joint = np.tile(per_row, [(h+1)//2])
|
344 |
+
joint = [
|
345 |
+
[image_start_token_id],
|
346 |
+
joint,
|
347 |
+
[image_end_token_id]
|
348 |
+
]
|
349 |
+
|
350 |
+
# Finally do the same for the global image
|
351 |
+
resized, _ = resize_and_pad(image, base_image_input_size)
|
352 |
+
resized = einops.rearrange(
|
353 |
+
resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
|
354 |
+
dh=base_image_input_d,
|
355 |
+
dw=base_image_input_d,
|
356 |
+
h=image_base_patch_h,
|
357 |
+
w=image_base_patch_w
|
358 |
+
)
|
359 |
+
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
|
360 |
+
|
361 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
362 |
+
patch_ordering = np.where(
|
363 |
+
patch_ordering >= 0,
|
364 |
+
patch_ordering + tokens_per_image,
|
365 |
+
-1
|
366 |
+
)
|
367 |
+
patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
|
368 |
+
per_row = np.full(
|
369 |
+
(image_token_length_w,),
|
370 |
+
image_patch_token_id,
|
371 |
+
)
|
372 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
373 |
+
extra_tokens = np.tile(per_row, [image_token_length_h])
|
374 |
+
joint = [
|
375 |
+
[image_start_token_id],
|
376 |
+
extra_tokens,
|
377 |
+
[image_end_token_id],
|
378 |
+
] + joint
|
379 |
+
|
380 |
+
joint = np.concatenate(joint, 0)
|
381 |
+
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
|
382 |
+
return patches, joint, patch_ordering, img_mask
|
383 |
+
|
384 |
+
def build_image_input_idx(
|
385 |
+
self,
|
386 |
+
image_tokens: np.ndarray,
|
387 |
+
patch_order: np.ndarray,
|
388 |
+
image_patch_token_id: int,
|
389 |
+
no_image: Optional[bool] = None,
|
390 |
+
image_token_length_w: Optional[int] = None,
|
391 |
+
image_token_length_h: Optional[int] = None,
|
392 |
+
):
|
393 |
+
"""Converts `patch_order` into a mapping of token_id -> patch_id"""
|
394 |
+
|
395 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
396 |
+
if no_image is not None and no_image:
|
397 |
+
return np.zeros((0, tokens_per_image), np.int32)
|
398 |
+
|
399 |
+
# Indices to insert the patches
|
400 |
+
image_input_idx = image_tokens == image_patch_token_id
|
401 |
+
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
|
402 |
+
|
403 |
+
if patch_order is not None:
|
404 |
+
n_tokens = image_input_idx.shape[0]
|
405 |
+
patch_order = np.reshape(patch_order, [-1])
|
406 |
+
n_patches = patch_order.shape[0]
|
407 |
+
|
408 |
+
valid = patch_order >= 0
|
409 |
+
n_valid_patches = valid.sum()
|
410 |
+
assert len(image_input_idx) == n_valid_patches
|
411 |
+
|
412 |
+
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
|
413 |
+
sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
|
414 |
+
|
415 |
+
# Project the inverted mapping into same sparse structure
|
416 |
+
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
|
417 |
+
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
|
418 |
+
|
419 |
+
# Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
|
420 |
+
valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
|
421 |
+
image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
|
422 |
+
image_input_idx = image_input_idx*valid - 100*(1 - valid)
|
423 |
+
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
|
424 |
+
return image_input_idx
|
425 |
+
|
426 |
+
def preprocess(
|
427 |
+
self,
|
428 |
+
image: np.ndarray,
|
429 |
+
image_patch_token_id: int,
|
430 |
+
image_col_token_id: int,
|
431 |
+
image_start_token_id: int,
|
432 |
+
image_end_token_id: int,
|
433 |
+
max_crops: Optional[int] = None,
|
434 |
+
overlap_margins: Optional[List[int]] = None,
|
435 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
436 |
+
image_token_length_w: Optional[int] = None,
|
437 |
+
image_token_length_h: Optional[int] = None,
|
438 |
+
image_patch_size: Optional[int] = None,
|
439 |
+
**kwargs,
|
440 |
+
):
|
441 |
+
"""Preprocesses a single image"""
|
442 |
+
|
443 |
+
max_crops = max_crops or self.max_crops
|
444 |
+
overlap_margins = overlap_margins or self.overlap_margins
|
445 |
+
base_image_input_size = base_image_input_size or self.base_image_input_size
|
446 |
+
image_token_length_w = image_token_length_w or self.image_token_length_w
|
447 |
+
image_token_length_h = image_token_length_h or self.image_token_length_h
|
448 |
+
image_patch_size = image_patch_size or self.image_patch_size
|
449 |
+
|
450 |
+
crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
|
451 |
+
image,
|
452 |
+
image_patch_token_id,
|
453 |
+
image_col_token_id,
|
454 |
+
image_start_token_id,
|
455 |
+
image_end_token_id,
|
456 |
+
max_crops,
|
457 |
+
overlap_margins,
|
458 |
+
base_image_input_size,
|
459 |
+
image_token_length_w,
|
460 |
+
image_token_length_h,
|
461 |
+
image_patch_size,
|
462 |
+
)
|
463 |
+
patch_idx = self.build_image_input_idx(
|
464 |
+
image_tokens,
|
465 |
+
patch_ordering,
|
466 |
+
image_patch_token_id,
|
467 |
+
image_token_length_w=image_token_length_w,
|
468 |
+
image_token_length_h=image_token_length_h,
|
469 |
+
)
|
470 |
+
return crops, image_tokens, patch_idx, img_mask
|
471 |
+
|
472 |
+
def multimodal_preprocess(
|
473 |
+
self,
|
474 |
+
images: np.ndarray,
|
475 |
+
tokens: List[int],
|
476 |
+
image_idx: np.ndarray,
|
477 |
+
sequence_length: int,
|
478 |
+
image_patch_token_id: int,
|
479 |
+
image_col_token_id: int,
|
480 |
+
image_start_token_id: int,
|
481 |
+
image_end_token_id: int,
|
482 |
+
**kwargs,
|
483 |
+
):
|
484 |
+
"""Merge images and text tokens into multi-modal features for the model
|
485 |
+
|
486 |
+
:param images: images to use as input
|
487 |
+
:param tokens: input text tokens
|
488 |
+
:param image_idx: where to insert the images into `tokens`
|
489 |
+
:params image_patch_token_id: id to use of tokens that will contain image features
|
490 |
+
:params image_col_token_id: token id for image column special tokens
|
491 |
+
:params image_start_token_id: token id for image start special tokens
|
492 |
+
:params image_end_token_id: token id for image end special tokens
|
493 |
+
:params kwargs: override preprocessor default args
|
494 |
+
"""
|
495 |
+
max_total_crops = kwargs.get("max_crops") or self.max_crops
|
496 |
+
image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
|
497 |
+
image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
|
498 |
+
image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
|
499 |
+
base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
|
500 |
+
image_num_patch = (
|
501 |
+
base_image_input_size[0] // image_patch_size,
|
502 |
+
base_image_input_size[1] // image_patch_size,
|
503 |
+
)
|
504 |
+
image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
|
505 |
+
|
506 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
507 |
+
n_pixels = image_patch_size * image_patch_size * 3
|
508 |
+
n_patches = image_num_patch[0] * image_num_patch[1]
|
509 |
+
|
510 |
+
if images is None:
|
511 |
+
return {
|
512 |
+
"input_ids": tokens,
|
513 |
+
"images": None,
|
514 |
+
"image_input_idx": None
|
515 |
+
}
|
516 |
+
else:
|
517 |
+
n = len(images)
|
518 |
+
all_crops = []
|
519 |
+
all_image_idx = []
|
520 |
+
out_tokens = []
|
521 |
+
all_crop_masks = []
|
522 |
+
|
523 |
+
for ix in range(n):
|
524 |
+
token_ix = image_idx[ix]
|
525 |
+
crops, image_tokens, patch_idx, img_mask = self.preprocess(
|
526 |
+
images[ix],
|
527 |
+
image_patch_token_id,
|
528 |
+
image_col_token_id,
|
529 |
+
image_start_token_id,
|
530 |
+
image_end_token_id,
|
531 |
+
**kwargs,
|
532 |
+
)
|
533 |
+
|
534 |
+
if token_ix == -1: # -1 is an image inserted at the very start
|
535 |
+
start = 0
|
536 |
+
token_ix = 0
|
537 |
+
end = 0
|
538 |
+
else:
|
539 |
+
start = 0 if ix == 0 else image_idx[ix-1] + 1
|
540 |
+
end = token_ix + 1
|
541 |
+
|
542 |
+
all_image_idx.append(patch_idx + token_ix)
|
543 |
+
all_crops.append(crops)
|
544 |
+
out_tokens.append(tokens[start:token_ix])
|
545 |
+
out_tokens.append(image_tokens)
|
546 |
+
if ix == (n - 1):
|
547 |
+
out_tokens.append(tokens[end:])
|
548 |
+
if image_padding_mask:
|
549 |
+
all_crop_masks.append(img_mask)
|
550 |
+
|
551 |
+
input_ids = np.concatenate(out_tokens, 0)
|
552 |
+
images = np.concatenate(all_crops, 0)
|
553 |
+
image_input_idx = np.concatenate(all_image_idx, 0)
|
554 |
+
if image_padding_mask:
|
555 |
+
image_masks = np.concatenate(all_crop_masks, 0)
|
556 |
+
else:
|
557 |
+
image_masks = None
|
558 |
+
|
559 |
+
out = {
|
560 |
+
"input_ids": input_ids,
|
561 |
+
"images": images,
|
562 |
+
"image_input_idx": image_input_idx
|
563 |
+
}
|
564 |
+
if image_masks is not None:
|
565 |
+
out["image_masks"] = image_masks
|
566 |
+
return out
|
567 |
+
|
568 |
+
|
569 |
+
MolmoImageProcessor.register_for_auto_class()
|
modeling_molmoe.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessing_molmo.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Processor class for Molmo.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from typing import List, Union, Optional
|
6 |
+
|
7 |
+
from transformers.utils.constants import OPENAI_CLIP_STD, OPENAI_CLIP_MEAN
|
8 |
+
|
9 |
+
try:
|
10 |
+
from typing import Unpack
|
11 |
+
except ImportError:
|
12 |
+
from typing_extensions import Unpack
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from transformers.image_utils import ImageInput
|
18 |
+
from transformers.processing_utils import (
|
19 |
+
TextKwargs,
|
20 |
+
ProcessingKwargs,
|
21 |
+
ProcessorMixin,
|
22 |
+
)
|
23 |
+
|
24 |
+
from transformers.tokenization_utils_base import TextInput
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
from transformers import AutoTokenizer
|
28 |
+
from .image_preprocessing_molmo import MolmoImagesKwargs, make_batched_images, MolmoImageProcessor
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
DEFAULT_IMAGE_PATCH_TOKEN = f"<im_patch>"
|
35 |
+
DEFAULT_IM_START_TOKEN = f"<im_start>"
|
36 |
+
DEFAULT_IM_END_TOKEN = f"<im_end>"
|
37 |
+
DEFAULT_IM_COL_TOKEN = f"<im_col>"
|
38 |
+
IMAGE_PROMPT = "<|image|>"
|
39 |
+
|
40 |
+
EXTRA_TOKENS = (DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_COL_TOKEN, IMAGE_PROMPT)
|
41 |
+
|
42 |
+
|
43 |
+
def get_special_token_ids(tokenizer):
|
44 |
+
ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
|
45 |
+
assert len(ids) == len(EXTRA_TOKENS)
|
46 |
+
return {k: i for k, i in zip(EXTRA_TOKENS, ids)}
|
47 |
+
|
48 |
+
|
49 |
+
class MolmoTextKwargs(TextKwargs, total=False):
|
50 |
+
style: Optional[str]
|
51 |
+
system_prompt: Optional[str]
|
52 |
+
message_format: Optional[str]
|
53 |
+
always_start_with_space: Optional[bool]
|
54 |
+
sequence_length: Optional[int]
|
55 |
+
|
56 |
+
|
57 |
+
class MolmoProcessorKwargs(ProcessingKwargs, total=False):
|
58 |
+
text_kwargs: MolmoTextKwargs
|
59 |
+
images_kwargs: MolmoImagesKwargs
|
60 |
+
_defaults = {
|
61 |
+
"images_kwargs": {
|
62 |
+
"max_crops": 12,
|
63 |
+
"overlap_margins": [4, 4],
|
64 |
+
"base_image_input_size": [336, 336],
|
65 |
+
"image_token_length_w": 12,
|
66 |
+
"image_token_length_h": 12,
|
67 |
+
"image_patch_size": 14,
|
68 |
+
"image_padding_mask": True,
|
69 |
+
},
|
70 |
+
"text_kwargs": {
|
71 |
+
"style": "long_caption",
|
72 |
+
"system_prompt": "none",
|
73 |
+
"message_format": "role",
|
74 |
+
"always_start_with_space": True,
|
75 |
+
"sequence_length": 1536,
|
76 |
+
"padding": False,
|
77 |
+
},
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
class MolmoProcessor(ProcessorMixin):
|
82 |
+
attributes = ["image_processor", "tokenizer"]
|
83 |
+
image_processor_class = "AutoImageProcessor"
|
84 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
85 |
+
|
86 |
+
def __init__(self, image_processor: MolmoImageProcessor = None, tokenizer : AutoTokenizer = None, **kwargs):
|
87 |
+
# self.image_processor = image_processor
|
88 |
+
# self.tokenizer = tokenizer
|
89 |
+
super().__init__(image_processor, tokenizer)
|
90 |
+
self._special_tokens = None
|
91 |
+
|
92 |
+
@property
|
93 |
+
def special_token_ids(self):
|
94 |
+
if self._special_tokens is None:
|
95 |
+
self._special_tokens = get_special_token_ids(self.tokenizer)
|
96 |
+
return self._special_tokens
|
97 |
+
|
98 |
+
def get_tokens_input(self, prompt, message_format, always_start_with_space):
|
99 |
+
if message_format == "none" or message_format is None:
|
100 |
+
pass
|
101 |
+
elif message_format == "role":
|
102 |
+
prompt = "User: " + prompt + " Assistant:"
|
103 |
+
else:
|
104 |
+
raise NotImplementedError(f"Message format {message_format} not implemented")
|
105 |
+
|
106 |
+
if always_start_with_space:
|
107 |
+
prompt = " " + prompt
|
108 |
+
|
109 |
+
tokens = self.tokenizer.encode(prompt, add_special_tokens=False)
|
110 |
+
|
111 |
+
return tokens
|
112 |
+
|
113 |
+
def process(
|
114 |
+
self,
|
115 |
+
text: TextInput = None,
|
116 |
+
images: ImageInput = None,
|
117 |
+
**kwargs: Unpack[MolmoProcessorKwargs],
|
118 |
+
):
|
119 |
+
output_kwargs = self._merge_kwargs(
|
120 |
+
MolmoProcessorKwargs,
|
121 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
122 |
+
**kwargs,
|
123 |
+
)
|
124 |
+
|
125 |
+
tokens = self.get_tokens_input(
|
126 |
+
text,
|
127 |
+
output_kwargs["text_kwargs"]["message_format"],
|
128 |
+
output_kwargs["text_kwargs"]["always_start_with_space"],
|
129 |
+
)
|
130 |
+
|
131 |
+
image_token_id = self.special_token_ids[IMAGE_PROMPT]
|
132 |
+
|
133 |
+
if images is not None:
|
134 |
+
images = make_batched_images(images)
|
135 |
+
images = [np.array(image).astype(np.uint8) for image in images]
|
136 |
+
# For now only support inserting images at the start
|
137 |
+
image_idx = [-1]*len(images)
|
138 |
+
else:
|
139 |
+
image_idx = None
|
140 |
+
|
141 |
+
sequence_length = output_kwargs["text_kwargs"]["sequence_length"]
|
142 |
+
|
143 |
+
image_patch_token_id = self.special_token_ids[DEFAULT_IMAGE_PATCH_TOKEN]
|
144 |
+
image_col_token_id = self.special_token_ids[DEFAULT_IM_COL_TOKEN]
|
145 |
+
image_start_token_id = self.special_token_ids[DEFAULT_IM_START_TOKEN]
|
146 |
+
image_end_token_id = self.special_token_ids[DEFAULT_IM_END_TOKEN]
|
147 |
+
out = self.image_processor.multimodal_preprocess(
|
148 |
+
images=images,
|
149 |
+
image_idx=image_idx,
|
150 |
+
tokens=np.asarray(tokens).astype(np.int32),
|
151 |
+
sequence_length=sequence_length,
|
152 |
+
image_patch_token_id=image_patch_token_id,
|
153 |
+
image_col_token_id=image_col_token_id,
|
154 |
+
image_start_token_id=image_start_token_id,
|
155 |
+
image_end_token_id=image_end_token_id,
|
156 |
+
**output_kwargs["images_kwargs"]
|
157 |
+
)
|
158 |
+
|
159 |
+
# Prepend BOS
|
160 |
+
# qwen2 and olmo do not have a BOS, and instead use EOS as a generic seperator token.
|
161 |
+
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
162 |
+
decoder_input_tokens = np.pad(out["input_ids"], [[1, 0]], constant_values=bos)
|
163 |
+
out["input_ids"] = decoder_input_tokens
|
164 |
+
if "image_input_idx" in out:
|
165 |
+
# Shift patch mapping up by one since we added BOS
|
166 |
+
image_input_idx = out["image_input_idx"]
|
167 |
+
out["image_input_idx"] = np.where(image_input_idx < 0, image_input_idx, image_input_idx + 1)
|
168 |
+
|
169 |
+
for k, v in out.items():
|
170 |
+
out[k] = torch.from_numpy(v)
|
171 |
+
|
172 |
+
return out
|
173 |
+
|
174 |
+
|
175 |
+
MolmoProcessor.register_for_auto_class()
|
preprocessor_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_preprocessing_molmo.MolmoImageProcessor",
|
4 |
+
"AutoProcessor": "preprocessing_molmo.MolmoProcessor"
|
5 |
+
},
|
6 |
+
"base_image_input_size": [
|
7 |
+
336,
|
8 |
+
336
|
9 |
+
],
|
10 |
+
"do_normalize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_padding_mask": true,
|
17 |
+
"image_patch_size": 14,
|
18 |
+
"image_processor_type": "MolmoImageProcessor",
|
19 |
+
"image_std": [
|
20 |
+
0.26862954,
|
21 |
+
0.26130258,
|
22 |
+
0.27577711
|
23 |
+
],
|
24 |
+
"image_token_length_h": 12,
|
25 |
+
"image_token_length_w": 12,
|
26 |
+
"max_crops": 12,
|
27 |
+
"overlap_margins": [
|
28 |
+
4,
|
29 |
+
4
|
30 |
+
],
|
31 |
+
"processor_class": "MolmoProcessor"
|
32 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "preprocessing_molmo.MolmoProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "MolmoProcessor"
|
6 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7396521f044a7f809d12dd12b4a391a7184268ae3b4e2445963ca42be7dd6211
|
3 |
+
size 28887711982
|
special_tokens_map.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": "<|endoftext|>",
|
3 |
+
"pad_token": "<|padding|>"
|
4 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "|||IP_ADDRESS|||",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": false
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
},
|
206 |
+
"50277": {
|
207 |
+
"content": "|||EMAIL_ADDRESS|||",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": true,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": false
|
213 |
+
},
|
214 |
+
"50278": {
|
215 |
+
"content": "|||PHONE_NUMBER|||",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": true,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": false
|
221 |
+
},
|
222 |
+
"50279": {
|
223 |
+
"content": "<|endoftext|>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": false,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": true
|
229 |
+
}
|
230 |
+
},
|
231 |
+
"bos_token": null,
|
232 |
+
"clean_up_tokenization_spaces": true,
|
233 |
+
"eos_token": "<|endoftext|>",
|
234 |
+
"model_max_length": 1000000000000000019884624838656,
|
235 |
+
"pad_token": "<|padding|>",
|
236 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
237 |
+
"unk_token": null
|
238 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|