Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ language:
|
|
12 |
<img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
13 |
|
14 |
|
15 |
-
# Model Card for OLMo
|
16 |
|
17 |
**Requires transformers versions v4.40.0 or newer**
|
18 |
|
@@ -21,7 +21,8 @@ OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the scie
|
|
21 |
The OLMo base models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
|
22 |
The adapted versions are trained on the [Tulu SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) and, for the Instruct version, a [cleaned version of the UltraFeedback dataset](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned).
|
23 |
|
24 |
-
OLMo
|
|
|
25 |
They show the performance gain that OLMo base models can achieve with existing fine-tuning techniques.
|
26 |
|
27 |
## Model Details
|
@@ -29,13 +30,13 @@ They show the performance gain that OLMo base models can achieve with existing f
|
|
29 |
We release two adapted model versions:
|
30 |
| Model | Training Method(s) | Datasets | Context Length |
|
31 |
|------|--------|---------|--|
|
32 |
-
| [OLMo
|
33 |
-
| [OLMo
|
34 |
|
35 |
-
These models are both trained on top of OLMo 1.7
|
36 |
| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|
37 |
|------|--------|---------|-------------|-----------------|----------------|
|
38 |
-
| [OLMo
|
39 |
|
40 |
|
41 |
### Model Description
|
@@ -69,8 +70,8 @@ You can run these models using recent (>= 4.40) versions of transformers.
|
|
69 |
|
70 |
```python
|
71 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
-
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-
|
74 |
chat = [
|
75 |
{ "role": "user", "content": "What is language modeling?" },
|
76 |
]
|
@@ -96,9 +97,9 @@ Core model results for the 7B adapted models are found below.
|
|
96 |
|
97 |
| Model | MMLU 0-shot β | AlpacaEval %win β | ToxiGen % Toxic β | TruthfulQA %Info+True β |
|
98 |
|-----------------------|---------------|--------------------|--------------------|-------------------------|
|
99 |
-
| **OLMo
|
100 |
-
| **[OLMo
|
101 |
-
| **[OLMo
|
102 |
|
103 |
|
104 |
|
|
|
12 |
<img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
13 |
|
14 |
|
15 |
+
# Model Card for OLMo 7B April 2024 Instruct
|
16 |
|
17 |
**Requires transformers versions v4.40.0 or newer**
|
18 |
|
|
|
21 |
The OLMo base models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
|
22 |
The adapted versions are trained on the [Tulu SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) and, for the Instruct version, a [cleaned version of the UltraFeedback dataset](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned).
|
23 |
|
24 |
+
OLMo 7B April 2024 Instruct and OLMo SFT are two adapted versions of these models trained for better question answering.
|
25 |
+
They are based on the OLMo 7B April release (previously called OLMo 1.7).
|
26 |
They show the performance gain that OLMo base models can achieve with existing fine-tuning techniques.
|
27 |
|
28 |
## Model Details
|
|
|
30 |
We release two adapted model versions:
|
31 |
| Model | Training Method(s) | Datasets | Context Length |
|
32 |
|------|--------|---------|--|
|
33 |
+
| [OLMo 7B April 2024 SFT](https://huggingface.co/allenai/OLMo-1.7-7B-SFT-hf) | SFT | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) | 2048 |
|
34 |
+
| [OLMo 7B April 2024 Instruct](https://huggingface.co/allenai/OLMo-1.7-7B-Instruct-hf) | SFT + DPO | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) + [Ultrafeedback Cleaned](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned) | 2048 |
|
35 |
|
36 |
+
These models are both trained on top of OLMo 7B April 2024 release (formerly called OLMo 1.7):
|
37 |
| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|
38 |
|------|--------|---------|-------------|-----------------|----------------|
|
39 |
+
| [OLMo 7B April 2024](https://huggingface.co/allenai/OLMo-1.7-7B-hf) | 2.05 Trillion |32 | 4096 | 32 | 4096 |
|
40 |
|
41 |
|
42 |
### Model Description
|
|
|
70 |
|
71 |
```python
|
72 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
+
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0424-Instruct-hf")
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-0424-Instruct-hf")
|
75 |
chat = [
|
76 |
{ "role": "user", "content": "What is language modeling?" },
|
77 |
]
|
|
|
97 |
|
98 |
| Model | MMLU 0-shot β | AlpacaEval %win β | ToxiGen % Toxic β | TruthfulQA %Info+True β |
|
99 |
|-----------------------|---------------|--------------------|--------------------|-------------------------|
|
100 |
+
| **OLMo 7B April 2024 base** | 47.5 | - | 83.2 | 25.7 |
|
101 |
+
| **[OLMo 7B April 2024 SFT](https://huggingface.co/allenai/OLMo-1.7-7B-SFT-hf)** | 52.4 | 70.4 | 0.5 | 38.8 |
|
102 |
+
| **[OLMo 7B April 2024 Instruct](https://huggingface.co/allenai/OLMo-1.7-7B-Instruct-hf)** | 52.4 | 82.2 | 0.2 | 75.6 |
|
103 |
|
104 |
|
105 |
|