Update README.md
Browse files
README.md
CHANGED
|
@@ -72,13 +72,88 @@ This model expects as input a single document image, rendered such that the long
|
|
| 72 |
The prompt must then contain the additional metadata from the document, and the easiest way to generate this
|
| 73 |
is to use the methods provided by the [olmOCR toolkit](https://github.com/allenai/olmocr).
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
## License and use
|
| 84 |
|
|
|
|
| 72 |
The prompt must then contain the additional metadata from the document, and the easiest way to generate this
|
| 73 |
is to use the methods provided by the [olmOCR toolkit](https://github.com/allenai/olmocr).
|
| 74 |
|
| 75 |
+
## Manual Prompting
|
| 76 |
+
|
| 77 |
+
If you want to prompt this model manually instead of using the [olmOCR toolkit](https://github.com/allenai/olmocr), please see the code below.
|
| 78 |
+
|
| 79 |
+
In normal usage, the olmOCR toolkit builds the prompt by rendering the PDF page, and
|
| 80 |
+
extracting relevant text blocks and image metadata. To duplicate that you will need to
|
| 81 |
+
|
| 82 |
+
```bash
|
| 83 |
+
pip install olmocr
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
and then run the following sample code.
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
import torch
|
| 91 |
+
import base64
|
| 92 |
+
import urllib.request
|
| 93 |
+
|
| 94 |
+
from io import BytesIO
|
| 95 |
+
from PIL import Image
|
| 96 |
+
from transformers import AutoProcessor, Qwen2_5VLForConditionalGeneration
|
| 97 |
+
|
| 98 |
+
from olmocr.data.renderpdf import render_pdf_to_base64png
|
| 99 |
+
from olmocr.prompts import build_no_anchoring_v4_yaml_prompt
|
| 100 |
+
|
| 101 |
+
# Initialize the model
|
| 102 |
+
model = Qwen2_5VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-1025", torch_dtype=torch.bfloat16).eval()
|
| 103 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
| 104 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 105 |
+
model.to(device)
|
| 106 |
+
|
| 107 |
+
# Grab a sample PDF
|
| 108 |
+
urllib.request.urlretrieve("https://molmo.allenai.org/paper.pdf", "./paper.pdf")
|
| 109 |
+
|
| 110 |
+
# Render page 1 to an image
|
| 111 |
+
image_base64 = render_pdf_to_base64png("./paper.pdf", 1, target_longest_image_dim=1288)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Build the full prompt
|
| 115 |
+
messages = [
|
| 116 |
+
{
|
| 117 |
+
"role": "user",
|
| 118 |
+
"content": [
|
| 119 |
+
{"type": "text", "text": build_no_anchoring_v4_yaml_prompt()},
|
| 120 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
| 121 |
+
],
|
| 122 |
+
}
|
| 123 |
+
]
|
| 124 |
+
|
| 125 |
+
# Apply the chat template and processor
|
| 126 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 127 |
+
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
| 128 |
+
|
| 129 |
+
inputs = processor(
|
| 130 |
+
text=[text],
|
| 131 |
+
images=[main_image],
|
| 132 |
+
padding=True,
|
| 133 |
+
return_tensors="pt",
|
| 134 |
+
)
|
| 135 |
+
inputs = {key: value.to(device) for (key, value) in inputs.items()}
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# Generate the output
|
| 139 |
+
output = model.generate(
|
| 140 |
+
**inputs,
|
| 141 |
+
temperature=0.8,
|
| 142 |
+
max_new_tokens=50,
|
| 143 |
+
num_return_sequences=1,
|
| 144 |
+
do_sample=True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Decode the output
|
| 148 |
+
prompt_length = inputs["input_ids"].shape[1]
|
| 149 |
+
new_tokens = output[:, prompt_length:]
|
| 150 |
+
text_output = processor.tokenizer.batch_decode(
|
| 151 |
+
new_tokens, skip_special_tokens=True
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
print(text_output)
|
| 155 |
+
# ['{"primary_language":"en","is_rotation_valid":true,"rotation_correction":0,"is_table":false,"is_diagram":false,"natural_text":"Molmo and PixMo:\\nOpen Weights and Open Data\\nfor State-of-the']
|
| 156 |
+
```
|
| 157 |
|
| 158 |
## License and use
|
| 159 |
|