Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +202 -3
- adapter_config.json +145 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +24 -0
- chat_template.json +3 -0
- global_step200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step200/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- preprocessor_config.json +29 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- trainer_state.json +2833 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-VL-3B-Instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
adapter_config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 128,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.05,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 64,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"layers.31.mlp.up_proj",
|
28 |
+
"layers.2.mlp.gate_proj",
|
29 |
+
"layers.29.mlp.down_proj",
|
30 |
+
"layers.31.mlp.gate_proj",
|
31 |
+
"k_proj",
|
32 |
+
"layers.8.mlp.gate_proj",
|
33 |
+
"o_proj",
|
34 |
+
"layers.28.mlp.up_proj",
|
35 |
+
"32.mlp.up_proj",
|
36 |
+
"layers.0.mlp.down_proj",
|
37 |
+
"layers.19.mlp.gate_proj",
|
38 |
+
"layers.16.mlp.gate_proj",
|
39 |
+
"layers.24.mlp.up_proj",
|
40 |
+
"layers.14.mlp.gate_proj",
|
41 |
+
"layers.12.mlp.down_proj",
|
42 |
+
"layers.3.mlp.gate_proj",
|
43 |
+
"q_proj",
|
44 |
+
"layers.4.mlp.down_proj",
|
45 |
+
"layers.21.mlp.down_proj",
|
46 |
+
"layers.0.mlp.gate_proj",
|
47 |
+
"layers.7.mlp.up_proj",
|
48 |
+
"layers.27.mlp.up_proj",
|
49 |
+
"layers.29.mlp.gate_proj",
|
50 |
+
"layers.20.mlp.up_proj",
|
51 |
+
"layers.4.mlp.up_proj",
|
52 |
+
"layers.26.mlp.gate_proj",
|
53 |
+
"layers.9.mlp.down_proj",
|
54 |
+
"layers.1.mlp.down_proj",
|
55 |
+
"layers.5.mlp.up_proj",
|
56 |
+
"layers.16.mlp.up_proj",
|
57 |
+
"layers.19.mlp.up_proj",
|
58 |
+
"layers.23.mlp.up_proj",
|
59 |
+
"layers.29.mlp.up_proj",
|
60 |
+
"layers.16.mlp.down_proj",
|
61 |
+
"lm_head",
|
62 |
+
"layers.6.mlp.down_proj",
|
63 |
+
"33.mlp.up_proj",
|
64 |
+
"layers.12.mlp.gate_proj",
|
65 |
+
"layers.17.mlp.gate_proj",
|
66 |
+
"34.mlp.up_proj",
|
67 |
+
"layers.18.mlp.gate_proj",
|
68 |
+
"layers.20.mlp.down_proj",
|
69 |
+
"layers.28.mlp.gate_proj",
|
70 |
+
"layers.14.mlp.down_proj",
|
71 |
+
"layers.26.mlp.down_proj",
|
72 |
+
"layers.21.mlp.up_proj",
|
73 |
+
"layers.21.mlp.gate_proj",
|
74 |
+
"layers.1.mlp.up_proj",
|
75 |
+
"layers.30.mlp.up_proj",
|
76 |
+
"layers.27.mlp.gate_proj",
|
77 |
+
"layers.5.mlp.down_proj",
|
78 |
+
"layers.8.mlp.up_proj",
|
79 |
+
"layers.7.mlp.down_proj",
|
80 |
+
"layers.19.mlp.down_proj",
|
81 |
+
"33.mlp.gate_proj",
|
82 |
+
"layers.22.mlp.down_proj",
|
83 |
+
"layers.0.mlp.up_proj",
|
84 |
+
"35.mlp.gate_proj",
|
85 |
+
"layers.25.mlp.up_proj",
|
86 |
+
"layers.4.mlp.gate_proj",
|
87 |
+
"33.mlp.down_proj",
|
88 |
+
"layers.14.mlp.up_proj",
|
89 |
+
"layers.15.mlp.gate_proj",
|
90 |
+
"layers.8.mlp.down_proj",
|
91 |
+
"layers.31.mlp.down_proj",
|
92 |
+
"layers.22.mlp.gate_proj",
|
93 |
+
"layers.11.mlp.gate_proj",
|
94 |
+
"layers.24.mlp.down_proj",
|
95 |
+
"layers.11.mlp.up_proj",
|
96 |
+
"layers.2.mlp.up_proj",
|
97 |
+
"layers.24.mlp.gate_proj",
|
98 |
+
"layers.6.mlp.gate_proj",
|
99 |
+
"layers.7.mlp.gate_proj",
|
100 |
+
"layers.9.mlp.gate_proj",
|
101 |
+
"layers.10.mlp.down_proj",
|
102 |
+
"layers.20.mlp.gate_proj",
|
103 |
+
"layers.30.mlp.gate_proj",
|
104 |
+
"layers.13.mlp.gate_proj",
|
105 |
+
"layers.17.mlp.down_proj",
|
106 |
+
"32.mlp.down_proj",
|
107 |
+
"layers.18.mlp.up_proj",
|
108 |
+
"32.mlp.gate_proj",
|
109 |
+
"layers.3.mlp.down_proj",
|
110 |
+
"layers.11.mlp.down_proj",
|
111 |
+
"layers.17.mlp.up_proj",
|
112 |
+
"layers.10.mlp.up_proj",
|
113 |
+
"v_proj",
|
114 |
+
"35.mlp.down_proj",
|
115 |
+
"layers.1.mlp.gate_proj",
|
116 |
+
"layers.12.mlp.up_proj",
|
117 |
+
"layers.15.mlp.up_proj",
|
118 |
+
"34.mlp.gate_proj",
|
119 |
+
"layers.15.mlp.down_proj",
|
120 |
+
"layers.18.mlp.down_proj",
|
121 |
+
"34.mlp.down_proj",
|
122 |
+
"layers.23.mlp.down_proj",
|
123 |
+
"layers.27.mlp.down_proj",
|
124 |
+
"layers.10.mlp.gate_proj",
|
125 |
+
"layers.6.mlp.up_proj",
|
126 |
+
"layers.23.mlp.gate_proj",
|
127 |
+
"layers.13.mlp.down_proj",
|
128 |
+
"layers.26.mlp.up_proj",
|
129 |
+
"layers.9.mlp.up_proj",
|
130 |
+
"layers.25.mlp.gate_proj",
|
131 |
+
"layers.25.mlp.down_proj",
|
132 |
+
"layers.13.mlp.up_proj",
|
133 |
+
"layers.3.mlp.up_proj",
|
134 |
+
"layers.2.mlp.down_proj",
|
135 |
+
"35.mlp.up_proj",
|
136 |
+
"layers.28.mlp.down_proj",
|
137 |
+
"layers.30.mlp.down_proj",
|
138 |
+
"layers.5.mlp.gate_proj",
|
139 |
+
"layers.22.mlp.up_proj"
|
140 |
+
],
|
141 |
+
"task_type": "CAUSAL_LM",
|
142 |
+
"trainable_token_indices": null,
|
143 |
+
"use_dora": false,
|
144 |
+
"use_rslora": false
|
145 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b13517ad060a2729d26c58754c186c5dc5596fd3e2d78f649e3a7a4783353099
|
3 |
+
size 881577392
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
global_step200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:481bb61df5e3b32db700046bc9492f8055e2dd43ef261aa13f013d82ea6ea463
|
3 |
+
size 777569296
|
global_step200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:512c0b94301d6a472826d3044c56e2f476dcb14b4abfe4d7e5679aae3ef0ec8a
|
3 |
+
size 777564368
|
global_step200/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1360cdffd684fc9a4d58e724f92c38ef52a87b28b35400ad7128b5ed983ff31f
|
3 |
+
size 881924536
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step200
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"longest_edge": 12845056,
|
26 |
+
"shortest_edge": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b70e8ccdc10215494e0c425708b960e8fa5b44650404f00877b72b073d94b178
|
3 |
+
size 14512
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0133f22fdd1fdcbce9e5106bc5b407a34b36866e3047076b1f5aee06230b5a9
|
3 |
+
size 14512
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
3 |
+
size 11422063
|
tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2833 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.0024896678783050343,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"clip_ratio": 0.0,
|
13 |
+
"completion_length": 98.46875,
|
14 |
+
"epoch": 1.244833939152517e-05,
|
15 |
+
"grad_norm": 0.7918580174446106,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 9.999937758303043e-06,
|
18 |
+
"loss": 0.0,
|
19 |
+
"reward": 0.06212758191395551,
|
20 |
+
"reward_std": 0.17572333943098783,
|
21 |
+
"rewards/format_reward_rec": 0.03125,
|
22 |
+
"rewards/iou_reward": 0.03087758377660066,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"clip_ratio": 0.0,
|
27 |
+
"completion_length": 96.3125,
|
28 |
+
"epoch": 2.489667878305034e-05,
|
29 |
+
"grad_norm": 0.4728325307369232,
|
30 |
+
"kl": 0.001476287841796875,
|
31 |
+
"learning_rate": 9.999875516606086e-06,
|
32 |
+
"loss": 0.0001,
|
33 |
+
"reward": 0.05815719813108444,
|
34 |
+
"reward_std": 0.1644933968782425,
|
35 |
+
"rewards/format_reward_rec": 0.03125,
|
36 |
+
"rewards/iou_reward": 0.02690719999372959,
|
37 |
+
"step": 2
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"clip_ratio": 0.0,
|
41 |
+
"completion_length": 104.34375,
|
42 |
+
"epoch": 3.7345018174575515e-05,
|
43 |
+
"grad_norm": 0.6685078740119934,
|
44 |
+
"kl": 0.0016937255859375,
|
45 |
+
"learning_rate": 9.999813274909128e-06,
|
46 |
+
"loss": 0.0001,
|
47 |
+
"reward": 0.2839890792965889,
|
48 |
+
"reward_std": 0.4464326649904251,
|
49 |
+
"rewards/format_reward_rec": 0.15625,
|
50 |
+
"rewards/iou_reward": 0.1277390792965889,
|
51 |
+
"step": 3
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"clip_ratio": 0.0,
|
55 |
+
"completion_length": 92.71875,
|
56 |
+
"epoch": 4.979335756610068e-05,
|
57 |
+
"grad_norm": 0.7356534004211426,
|
58 |
+
"kl": 0.00652313232421875,
|
59 |
+
"learning_rate": 9.99975103321217e-06,
|
60 |
+
"loss": 0.0003,
|
61 |
+
"reward": 0.43574684858322144,
|
62 |
+
"reward_std": 0.5346276015043259,
|
63 |
+
"rewards/format_reward_rec": 0.28125,
|
64 |
+
"rewards/iou_reward": 0.15449684113264084,
|
65 |
+
"step": 4
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"clip_ratio": 0.0,
|
69 |
+
"completion_length": 116.8125,
|
70 |
+
"epoch": 6.224169695762585e-05,
|
71 |
+
"grad_norm": 1.5218911170959473,
|
72 |
+
"kl": 0.01190185546875,
|
73 |
+
"learning_rate": 9.999688791515214e-06,
|
74 |
+
"loss": 0.0005,
|
75 |
+
"reward": 0.5201369971036911,
|
76 |
+
"reward_std": 0.7230685949325562,
|
77 |
+
"rewards/format_reward_rec": 0.34375,
|
78 |
+
"rewards/iou_reward": 0.1763869971036911,
|
79 |
+
"step": 5
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"clip_ratio": 0.0,
|
83 |
+
"completion_length": 100.28125,
|
84 |
+
"epoch": 7.469003634915103e-05,
|
85 |
+
"grad_norm": 1.0370837450027466,
|
86 |
+
"kl": 0.03338623046875,
|
87 |
+
"learning_rate": 9.999626549818255e-06,
|
88 |
+
"loss": 0.0013,
|
89 |
+
"reward": 0.45021720230579376,
|
90 |
+
"reward_std": 0.6490348875522614,
|
91 |
+
"rewards/format_reward_rec": 0.21875,
|
92 |
+
"rewards/iou_reward": 0.23146723210811615,
|
93 |
+
"step": 6
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"clip_ratio": 0.0,
|
97 |
+
"completion_length": 109.84375,
|
98 |
+
"epoch": 8.71383757406762e-05,
|
99 |
+
"grad_norm": 0.8345764875411987,
|
100 |
+
"kl": 0.03363037109375,
|
101 |
+
"learning_rate": 9.999564308121297e-06,
|
102 |
+
"loss": 0.0013,
|
103 |
+
"reward": 0.4857834577560425,
|
104 |
+
"reward_std": 0.7779734134674072,
|
105 |
+
"rewards/format_reward_rec": 0.3125,
|
106 |
+
"rewards/iou_reward": 0.17328345030546188,
|
107 |
+
"step": 7
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"clip_ratio": 0.0,
|
111 |
+
"completion_length": 101.71875,
|
112 |
+
"epoch": 9.958671513220136e-05,
|
113 |
+
"grad_norm": 0.857598066329956,
|
114 |
+
"kl": 0.03662109375,
|
115 |
+
"learning_rate": 9.999502066424341e-06,
|
116 |
+
"loss": 0.0015,
|
117 |
+
"reward": 0.9932036697864532,
|
118 |
+
"reward_std": 0.8116889894008636,
|
119 |
+
"rewards/format_reward_rec": 0.5625,
|
120 |
+
"rewards/iou_reward": 0.43070371448993683,
|
121 |
+
"step": 8
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"clip_ratio": 0.0,
|
125 |
+
"completion_length": 118.28125,
|
126 |
+
"epoch": 0.00011203505452372654,
|
127 |
+
"grad_norm": 0.6808584928512573,
|
128 |
+
"kl": 0.0491943359375,
|
129 |
+
"learning_rate": 9.999439824727383e-06,
|
130 |
+
"loss": 0.002,
|
131 |
+
"reward": 1.22513547539711,
|
132 |
+
"reward_std": 0.6850164234638214,
|
133 |
+
"rewards/format_reward_rec": 0.71875,
|
134 |
+
"rewards/iou_reward": 0.5063855350017548,
|
135 |
+
"step": 9
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"clip_ratio": 0.0,
|
139 |
+
"completion_length": 130.65625,
|
140 |
+
"epoch": 0.0001244833939152517,
|
141 |
+
"grad_norm": 0.7755190134048462,
|
142 |
+
"kl": 0.047607421875,
|
143 |
+
"learning_rate": 9.999377583030425e-06,
|
144 |
+
"loss": 0.0019,
|
145 |
+
"reward": 1.080191969871521,
|
146 |
+
"reward_std": 0.8103933334350586,
|
147 |
+
"rewards/format_reward_rec": 0.6875,
|
148 |
+
"rewards/iou_reward": 0.3926919847726822,
|
149 |
+
"step": 10
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"clip_ratio": 0.0,
|
153 |
+
"completion_length": 119.65625,
|
154 |
+
"epoch": 0.00013693173330677687,
|
155 |
+
"grad_norm": 0.8545856475830078,
|
156 |
+
"kl": 0.055908203125,
|
157 |
+
"learning_rate": 9.999315341333466e-06,
|
158 |
+
"loss": 0.0022,
|
159 |
+
"reward": 1.0447435975074768,
|
160 |
+
"reward_std": 0.7395115196704865,
|
161 |
+
"rewards/format_reward_rec": 0.71875,
|
162 |
+
"rewards/iou_reward": 0.3259935975074768,
|
163 |
+
"step": 11
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"clip_ratio": 0.0,
|
167 |
+
"completion_length": 138.25,
|
168 |
+
"epoch": 0.00014938007269830206,
|
169 |
+
"grad_norm": 0.5796331167221069,
|
170 |
+
"kl": 0.059326171875,
|
171 |
+
"learning_rate": 9.999253099636508e-06,
|
172 |
+
"loss": 0.0024,
|
173 |
+
"reward": 1.3631539940834045,
|
174 |
+
"reward_std": 0.5613991022109985,
|
175 |
+
"rewards/format_reward_rec": 0.875,
|
176 |
+
"rewards/iou_reward": 0.48815396428108215,
|
177 |
+
"step": 12
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"clip_ratio": 0.0,
|
181 |
+
"completion_length": 139.9375,
|
182 |
+
"epoch": 0.00016182841208982722,
|
183 |
+
"grad_norm": 0.7014759182929993,
|
184 |
+
"kl": 0.1033935546875,
|
185 |
+
"learning_rate": 9.999190857939552e-06,
|
186 |
+
"loss": 0.0041,
|
187 |
+
"reward": 1.2715444564819336,
|
188 |
+
"reward_std": 0.6332900673151016,
|
189 |
+
"rewards/format_reward_rec": 0.75,
|
190 |
+
"rewards/iou_reward": 0.5215444564819336,
|
191 |
+
"step": 13
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"clip_ratio": 0.0,
|
195 |
+
"completion_length": 109.25,
|
196 |
+
"epoch": 0.0001742767514813524,
|
197 |
+
"grad_norm": 0.6986764073371887,
|
198 |
+
"kl": 0.08349609375,
|
199 |
+
"learning_rate": 9.999128616242594e-06,
|
200 |
+
"loss": 0.0033,
|
201 |
+
"reward": 1.4144143462181091,
|
202 |
+
"reward_std": 0.5491724014282227,
|
203 |
+
"rewards/format_reward_rec": 0.84375,
|
204 |
+
"rewards/iou_reward": 0.5706643462181091,
|
205 |
+
"step": 14
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"clip_ratio": 0.0,
|
209 |
+
"completion_length": 138.71875,
|
210 |
+
"epoch": 0.00018672509087287755,
|
211 |
+
"grad_norm": 718.58984375,
|
212 |
+
"kl": 53.529296875,
|
213 |
+
"learning_rate": 9.999066374545636e-06,
|
214 |
+
"loss": 2.145,
|
215 |
+
"reward": 1.1624789834022522,
|
216 |
+
"reward_std": 0.586757242679596,
|
217 |
+
"rewards/format_reward_rec": 0.78125,
|
218 |
+
"rewards/iou_reward": 0.381228968501091,
|
219 |
+
"step": 15
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"clip_ratio": 0.0,
|
223 |
+
"completion_length": 106.46875,
|
224 |
+
"epoch": 0.00019917343026440272,
|
225 |
+
"grad_norm": 0.6615357995033264,
|
226 |
+
"kl": 0.064208984375,
|
227 |
+
"learning_rate": 9.99900413284868e-06,
|
228 |
+
"loss": 0.0026,
|
229 |
+
"reward": 1.4353669881820679,
|
230 |
+
"reward_std": 0.5828511416912079,
|
231 |
+
"rewards/format_reward_rec": 0.84375,
|
232 |
+
"rewards/iou_reward": 0.5916168987751007,
|
233 |
+
"step": 16
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"clip_ratio": 0.0,
|
237 |
+
"completion_length": 122.78125,
|
238 |
+
"epoch": 0.0002116217696559279,
|
239 |
+
"grad_norm": 0.719054102897644,
|
240 |
+
"kl": 0.081787109375,
|
241 |
+
"learning_rate": 9.998941891151721e-06,
|
242 |
+
"loss": 0.0033,
|
243 |
+
"reward": 1.6010385155677795,
|
244 |
+
"reward_std": 0.29098983108997345,
|
245 |
+
"rewards/format_reward_rec": 0.9375,
|
246 |
+
"rewards/iou_reward": 0.6635385453701019,
|
247 |
+
"step": 17
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"clip_ratio": 0.0,
|
251 |
+
"completion_length": 109.125,
|
252 |
+
"epoch": 0.00022407010904745308,
|
253 |
+
"grad_norm": 0.6034934520721436,
|
254 |
+
"kl": 0.075927734375,
|
255 |
+
"learning_rate": 9.998879649454763e-06,
|
256 |
+
"loss": 0.003,
|
257 |
+
"reward": 1.747658133506775,
|
258 |
+
"reward_std": 0.19360525161027908,
|
259 |
+
"rewards/format_reward_rec": 1.0,
|
260 |
+
"rewards/iou_reward": 0.7476581633090973,
|
261 |
+
"step": 18
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"clip_ratio": 0.0,
|
265 |
+
"completion_length": 94.21875,
|
266 |
+
"epoch": 0.00023651844843897824,
|
267 |
+
"grad_norm": 0.7481162548065186,
|
268 |
+
"kl": 0.1044921875,
|
269 |
+
"learning_rate": 9.998817407757807e-06,
|
270 |
+
"loss": 0.0042,
|
271 |
+
"reward": 1.5863367319107056,
|
272 |
+
"reward_std": 0.4242909550666809,
|
273 |
+
"rewards/format_reward_rec": 0.9375,
|
274 |
+
"rewards/iou_reward": 0.6488366723060608,
|
275 |
+
"step": 19
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"clip_ratio": 0.0,
|
279 |
+
"completion_length": 104.75,
|
280 |
+
"epoch": 0.0002489667878305034,
|
281 |
+
"grad_norm": 0.643527626991272,
|
282 |
+
"kl": 0.07177734375,
|
283 |
+
"learning_rate": 9.998755166060848e-06,
|
284 |
+
"loss": 0.0029,
|
285 |
+
"reward": 1.3996891975402832,
|
286 |
+
"reward_std": 0.37390778958797455,
|
287 |
+
"rewards/format_reward_rec": 0.9375,
|
288 |
+
"rewards/iou_reward": 0.4621891975402832,
|
289 |
+
"step": 20
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"clip_ratio": 0.0,
|
293 |
+
"completion_length": 107.625,
|
294 |
+
"epoch": 0.00026141512722202857,
|
295 |
+
"grad_norm": 0.7482960224151611,
|
296 |
+
"kl": 0.098388671875,
|
297 |
+
"learning_rate": 9.99869292436389e-06,
|
298 |
+
"loss": 0.0039,
|
299 |
+
"reward": 1.5653824210166931,
|
300 |
+
"reward_std": 0.34851640462875366,
|
301 |
+
"rewards/format_reward_rec": 0.9375,
|
302 |
+
"rewards/iou_reward": 0.6278825104236603,
|
303 |
+
"step": 21
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"clip_ratio": 0.0,
|
307 |
+
"completion_length": 102.1875,
|
308 |
+
"epoch": 0.00027386346661355373,
|
309 |
+
"grad_norm": 0.6192396283149719,
|
310 |
+
"kl": 0.074462890625,
|
311 |
+
"learning_rate": 9.998630682666934e-06,
|
312 |
+
"loss": 0.003,
|
313 |
+
"reward": 1.8187173008918762,
|
314 |
+
"reward_std": 0.20407778769731522,
|
315 |
+
"rewards/format_reward_rec": 1.0,
|
316 |
+
"rewards/iou_reward": 0.8187173306941986,
|
317 |
+
"step": 22
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"clip_ratio": 0.0,
|
321 |
+
"completion_length": 119.6875,
|
322 |
+
"epoch": 0.0002863118060050789,
|
323 |
+
"grad_norm": 0.6803566217422485,
|
324 |
+
"kl": 0.0623779296875,
|
325 |
+
"learning_rate": 9.998568440969976e-06,
|
326 |
+
"loss": 0.0025,
|
327 |
+
"reward": 1.60598224401474,
|
328 |
+
"reward_std": 0.34990501403808594,
|
329 |
+
"rewards/format_reward_rec": 0.96875,
|
330 |
+
"rewards/iou_reward": 0.63723224401474,
|
331 |
+
"step": 23
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"clip_ratio": 0.0,
|
335 |
+
"completion_length": 95.78125,
|
336 |
+
"epoch": 0.0002987601453966041,
|
337 |
+
"grad_norm": 0.6281342506408691,
|
338 |
+
"kl": 0.092529296875,
|
339 |
+
"learning_rate": 9.998506199273018e-06,
|
340 |
+
"loss": 0.0037,
|
341 |
+
"reward": 1.672945261001587,
|
342 |
+
"reward_std": 0.4158570021390915,
|
343 |
+
"rewards/format_reward_rec": 0.9375,
|
344 |
+
"rewards/iou_reward": 0.7354452311992645,
|
345 |
+
"step": 24
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"clip_ratio": 0.0,
|
349 |
+
"completion_length": 80.875,
|
350 |
+
"epoch": 0.0003112084847881293,
|
351 |
+
"grad_norm": 0.7759396433830261,
|
352 |
+
"kl": 0.1015625,
|
353 |
+
"learning_rate": 9.998443957576061e-06,
|
354 |
+
"loss": 0.0041,
|
355 |
+
"reward": 1.627230942249298,
|
356 |
+
"reward_std": 0.34825482964515686,
|
357 |
+
"rewards/format_reward_rec": 0.96875,
|
358 |
+
"rewards/iou_reward": 0.6584809124469757,
|
359 |
+
"step": 25
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"clip_ratio": 0.0,
|
363 |
+
"completion_length": 97.6875,
|
364 |
+
"epoch": 0.00032365682417965445,
|
365 |
+
"grad_norm": 0.6152196526527405,
|
366 |
+
"kl": 0.103515625,
|
367 |
+
"learning_rate": 9.998381715879103e-06,
|
368 |
+
"loss": 0.0041,
|
369 |
+
"reward": 1.6838378310203552,
|
370 |
+
"reward_std": 0.11833954602479935,
|
371 |
+
"rewards/format_reward_rec": 1.0,
|
372 |
+
"rewards/iou_reward": 0.6838378608226776,
|
373 |
+
"step": 26
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"clip_ratio": 0.0,
|
377 |
+
"completion_length": 80.78125,
|
378 |
+
"epoch": 0.0003361051635711796,
|
379 |
+
"grad_norm": 0.5609109997749329,
|
380 |
+
"kl": 0.1142578125,
|
381 |
+
"learning_rate": 9.998319474182145e-06,
|
382 |
+
"loss": 0.0046,
|
383 |
+
"reward": 1.8090254664421082,
|
384 |
+
"reward_std": 0.062307149171829224,
|
385 |
+
"rewards/format_reward_rec": 1.0,
|
386 |
+
"rewards/iou_reward": 0.8090254366397858,
|
387 |
+
"step": 27
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"clip_ratio": 0.0,
|
391 |
+
"completion_length": 76.71875,
|
392 |
+
"epoch": 0.0003485535029627048,
|
393 |
+
"grad_norm": 0.6533063054084778,
|
394 |
+
"kl": 0.13818359375,
|
395 |
+
"learning_rate": 9.998257232485187e-06,
|
396 |
+
"loss": 0.0055,
|
397 |
+
"reward": 1.6686185598373413,
|
398 |
+
"reward_std": 0.1674296036362648,
|
399 |
+
"rewards/format_reward_rec": 1.0,
|
400 |
+
"rewards/iou_reward": 0.6686184704303741,
|
401 |
+
"step": 28
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"clip_ratio": 0.0,
|
405 |
+
"completion_length": 85.15625,
|
406 |
+
"epoch": 0.00036100184235422994,
|
407 |
+
"grad_norm": 0.5266671180725098,
|
408 |
+
"kl": 0.09375,
|
409 |
+
"learning_rate": 9.998194990788229e-06,
|
410 |
+
"loss": 0.0037,
|
411 |
+
"reward": 1.7991711497306824,
|
412 |
+
"reward_std": 0.2697625942528248,
|
413 |
+
"rewards/format_reward_rec": 0.96875,
|
414 |
+
"rewards/iou_reward": 0.8304212093353271,
|
415 |
+
"step": 29
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"clip_ratio": 0.0,
|
419 |
+
"completion_length": 74.15625,
|
420 |
+
"epoch": 0.0003734501817457551,
|
421 |
+
"grad_norm": 0.680327296257019,
|
422 |
+
"kl": 0.12109375,
|
423 |
+
"learning_rate": 9.998132749091272e-06,
|
424 |
+
"loss": 0.0048,
|
425 |
+
"reward": 1.719760000705719,
|
426 |
+
"reward_std": 0.18976478278636932,
|
427 |
+
"rewards/format_reward_rec": 0.96875,
|
428 |
+
"rewards/iou_reward": 0.7510099709033966,
|
429 |
+
"step": 30
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"clip_ratio": 0.0,
|
433 |
+
"completion_length": 89.96875,
|
434 |
+
"epoch": 0.00038589852113728027,
|
435 |
+
"grad_norm": 0.5414130687713623,
|
436 |
+
"kl": 0.090087890625,
|
437 |
+
"learning_rate": 9.998070507394314e-06,
|
438 |
+
"loss": 0.0036,
|
439 |
+
"reward": 1.6798821687698364,
|
440 |
+
"reward_std": 0.21795213222503662,
|
441 |
+
"rewards/format_reward_rec": 0.96875,
|
442 |
+
"rewards/iou_reward": 0.7111322581768036,
|
443 |
+
"step": 31
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"clip_ratio": 0.0,
|
447 |
+
"completion_length": 84.9375,
|
448 |
+
"epoch": 0.00039834686052880544,
|
449 |
+
"grad_norm": 0.46933692693710327,
|
450 |
+
"kl": 0.1025390625,
|
451 |
+
"learning_rate": 9.998008265697356e-06,
|
452 |
+
"loss": 0.0041,
|
453 |
+
"reward": 1.7964898943901062,
|
454 |
+
"reward_std": 0.22818857431411743,
|
455 |
+
"rewards/format_reward_rec": 0.96875,
|
456 |
+
"rewards/iou_reward": 0.827739804983139,
|
457 |
+
"step": 32
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"clip_ratio": 0.0,
|
461 |
+
"completion_length": 79.21875,
|
462 |
+
"epoch": 0.0004107951999203306,
|
463 |
+
"grad_norm": 0.6017041802406311,
|
464 |
+
"kl": 0.13720703125,
|
465 |
+
"learning_rate": 9.9979460240004e-06,
|
466 |
+
"loss": 0.0055,
|
467 |
+
"reward": 1.6301453113555908,
|
468 |
+
"reward_std": 0.27136652171611786,
|
469 |
+
"rewards/format_reward_rec": 1.0,
|
470 |
+
"rewards/iou_reward": 0.6301453560590744,
|
471 |
+
"step": 33
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"clip_ratio": 0.0,
|
475 |
+
"completion_length": 82.5,
|
476 |
+
"epoch": 0.0004232435393118558,
|
477 |
+
"grad_norm": 0.5675345659255981,
|
478 |
+
"kl": 0.125732421875,
|
479 |
+
"learning_rate": 9.997883782303441e-06,
|
480 |
+
"loss": 0.005,
|
481 |
+
"reward": 1.5771546363830566,
|
482 |
+
"reward_std": 0.1715424843132496,
|
483 |
+
"rewards/format_reward_rec": 1.0,
|
484 |
+
"rewards/iou_reward": 0.5771546363830566,
|
485 |
+
"step": 34
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"clip_ratio": 0.0,
|
489 |
+
"completion_length": 95.15625,
|
490 |
+
"epoch": 0.000435691878703381,
|
491 |
+
"grad_norm": 0.6039296388626099,
|
492 |
+
"kl": 0.11669921875,
|
493 |
+
"learning_rate": 9.997821540606483e-06,
|
494 |
+
"loss": 0.0047,
|
495 |
+
"reward": 1.747186541557312,
|
496 |
+
"reward_std": 0.30833982676267624,
|
497 |
+
"rewards/format_reward_rec": 0.96875,
|
498 |
+
"rewards/iou_reward": 0.7784366011619568,
|
499 |
+
"step": 35
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"clip_ratio": 0.0,
|
503 |
+
"completion_length": 79.28125,
|
504 |
+
"epoch": 0.00044814021809490615,
|
505 |
+
"grad_norm": 1.9511338472366333,
|
506 |
+
"kl": 0.32470703125,
|
507 |
+
"learning_rate": 9.997759298909527e-06,
|
508 |
+
"loss": 0.0129,
|
509 |
+
"reward": 1.6023600101470947,
|
510 |
+
"reward_std": 0.3212697505950928,
|
511 |
+
"rewards/format_reward_rec": 0.9375,
|
512 |
+
"rewards/iou_reward": 0.6648600399494171,
|
513 |
+
"step": 36
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"clip_ratio": 0.0,
|
517 |
+
"completion_length": 91.96875,
|
518 |
+
"epoch": 0.0004605885574864313,
|
519 |
+
"grad_norm": 0.6094495058059692,
|
520 |
+
"kl": 0.1591796875,
|
521 |
+
"learning_rate": 9.997697057212569e-06,
|
522 |
+
"loss": 0.0064,
|
523 |
+
"reward": 1.5261580348014832,
|
524 |
+
"reward_std": 0.3047035411000252,
|
525 |
+
"rewards/format_reward_rec": 0.96875,
|
526 |
+
"rewards/iou_reward": 0.557407945394516,
|
527 |
+
"step": 37
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"clip_ratio": 0.0,
|
531 |
+
"completion_length": 84.28125,
|
532 |
+
"epoch": 0.0004730368968779565,
|
533 |
+
"grad_norm": 0.5133370161056519,
|
534 |
+
"kl": 0.10693359375,
|
535 |
+
"learning_rate": 9.99763481551561e-06,
|
536 |
+
"loss": 0.0043,
|
537 |
+
"reward": 1.5371721386909485,
|
538 |
+
"reward_std": 0.2661096602678299,
|
539 |
+
"rewards/format_reward_rec": 0.9375,
|
540 |
+
"rewards/iou_reward": 0.5996721386909485,
|
541 |
+
"step": 38
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"clip_ratio": 0.0,
|
545 |
+
"completion_length": 95.9375,
|
546 |
+
"epoch": 0.00048548523626948165,
|
547 |
+
"grad_norm": 0.47525426745414734,
|
548 |
+
"kl": 0.12255859375,
|
549 |
+
"learning_rate": 9.997572573818654e-06,
|
550 |
+
"loss": 0.0049,
|
551 |
+
"reward": 1.6892600059509277,
|
552 |
+
"reward_std": 0.1822982355952263,
|
553 |
+
"rewards/format_reward_rec": 1.0,
|
554 |
+
"rewards/iou_reward": 0.6892601251602173,
|
555 |
+
"step": 39
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"clip_ratio": 0.0,
|
559 |
+
"completion_length": 90.0,
|
560 |
+
"epoch": 0.0004979335756610068,
|
561 |
+
"grad_norm": 0.5481269955635071,
|
562 |
+
"kl": 0.0859375,
|
563 |
+
"learning_rate": 9.997510332121696e-06,
|
564 |
+
"loss": 0.0034,
|
565 |
+
"reward": 1.669859528541565,
|
566 |
+
"reward_std": 0.16043629869818687,
|
567 |
+
"rewards/format_reward_rec": 1.0,
|
568 |
+
"rewards/iou_reward": 0.6698595285415649,
|
569 |
+
"step": 40
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"clip_ratio": 0.0,
|
573 |
+
"completion_length": 87.34375,
|
574 |
+
"epoch": 0.000510381915052532,
|
575 |
+
"grad_norm": 0.574486494064331,
|
576 |
+
"kl": 0.110107421875,
|
577 |
+
"learning_rate": 9.997448090424738e-06,
|
578 |
+
"loss": 0.0044,
|
579 |
+
"reward": 1.6145691275596619,
|
580 |
+
"reward_std": 0.16043317317962646,
|
581 |
+
"rewards/format_reward_rec": 0.96875,
|
582 |
+
"rewards/iou_reward": 0.6458190977573395,
|
583 |
+
"step": 41
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"clip_ratio": 0.0,
|
587 |
+
"completion_length": 105.21875,
|
588 |
+
"epoch": 0.0005228302544440571,
|
589 |
+
"grad_norm": 0.5472383499145508,
|
590 |
+
"kl": 0.091552734375,
|
591 |
+
"learning_rate": 9.997385848727781e-06,
|
592 |
+
"loss": 0.0037,
|
593 |
+
"reward": 1.6457700729370117,
|
594 |
+
"reward_std": 0.3335290104150772,
|
595 |
+
"rewards/format_reward_rec": 0.9375,
|
596 |
+
"rewards/iou_reward": 0.7082701325416565,
|
597 |
+
"step": 42
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"clip_ratio": 0.0,
|
601 |
+
"completion_length": 83.125,
|
602 |
+
"epoch": 0.0005352785938355823,
|
603 |
+
"grad_norm": 0.5541640520095825,
|
604 |
+
"kl": 0.14306640625,
|
605 |
+
"learning_rate": 9.997323607030823e-06,
|
606 |
+
"loss": 0.0057,
|
607 |
+
"reward": 1.6855499744415283,
|
608 |
+
"reward_std": 0.2959246411919594,
|
609 |
+
"rewards/format_reward_rec": 0.96875,
|
610 |
+
"rewards/iou_reward": 0.7167999744415283,
|
611 |
+
"step": 43
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"clip_ratio": 0.0,
|
615 |
+
"completion_length": 81.5625,
|
616 |
+
"epoch": 0.0005477269332271075,
|
617 |
+
"grad_norm": 0.5674740672111511,
|
618 |
+
"kl": 0.13134765625,
|
619 |
+
"learning_rate": 9.997261365333865e-06,
|
620 |
+
"loss": 0.0053,
|
621 |
+
"reward": 1.514305830001831,
|
622 |
+
"reward_std": 0.22089600563049316,
|
623 |
+
"rewards/format_reward_rec": 1.0,
|
624 |
+
"rewards/iou_reward": 0.5143058151006699,
|
625 |
+
"step": 44
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"clip_ratio": 0.0,
|
629 |
+
"completion_length": 91.53125,
|
630 |
+
"epoch": 0.0005601752726186326,
|
631 |
+
"grad_norm": 0.5152494311332703,
|
632 |
+
"kl": 0.089599609375,
|
633 |
+
"learning_rate": 9.997199123636909e-06,
|
634 |
+
"loss": 0.0036,
|
635 |
+
"reward": 1.794326663017273,
|
636 |
+
"reward_std": 0.043453872203826904,
|
637 |
+
"rewards/format_reward_rec": 1.0,
|
638 |
+
"rewards/iou_reward": 0.7943267226219177,
|
639 |
+
"step": 45
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"clip_ratio": 0.0,
|
643 |
+
"completion_length": 87.96875,
|
644 |
+
"epoch": 0.0005726236120101578,
|
645 |
+
"grad_norm": 0.5079981088638306,
|
646 |
+
"kl": 0.125,
|
647 |
+
"learning_rate": 9.99713688193995e-06,
|
648 |
+
"loss": 0.005,
|
649 |
+
"reward": 1.7662574648857117,
|
650 |
+
"reward_std": 0.17677413672208786,
|
651 |
+
"rewards/format_reward_rec": 1.0,
|
652 |
+
"rewards/iou_reward": 0.7662573754787445,
|
653 |
+
"step": 46
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"clip_ratio": 0.0,
|
657 |
+
"completion_length": 84.0,
|
658 |
+
"epoch": 0.000585071951401683,
|
659 |
+
"grad_norm": 0.5033786296844482,
|
660 |
+
"kl": 0.1220703125,
|
661 |
+
"learning_rate": 9.997074640242992e-06,
|
662 |
+
"loss": 0.0049,
|
663 |
+
"reward": 1.4638007879257202,
|
664 |
+
"reward_std": 0.2003663182258606,
|
665 |
+
"rewards/format_reward_rec": 1.0,
|
666 |
+
"rewards/iou_reward": 0.4638008028268814,
|
667 |
+
"step": 47
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"clip_ratio": 0.0,
|
671 |
+
"completion_length": 80.875,
|
672 |
+
"epoch": 0.0005975202907932082,
|
673 |
+
"grad_norm": 0.5780296325683594,
|
674 |
+
"kl": 0.12060546875,
|
675 |
+
"learning_rate": 9.997012398546034e-06,
|
676 |
+
"loss": 0.0048,
|
677 |
+
"reward": 1.7631506323814392,
|
678 |
+
"reward_std": 0.2995036095380783,
|
679 |
+
"rewards/format_reward_rec": 0.96875,
|
680 |
+
"rewards/iou_reward": 0.7944006323814392,
|
681 |
+
"step": 48
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"clip_ratio": 0.0,
|
685 |
+
"completion_length": 89.125,
|
686 |
+
"epoch": 0.0006099686301847334,
|
687 |
+
"grad_norm": 0.523960530757904,
|
688 |
+
"kl": 0.13037109375,
|
689 |
+
"learning_rate": 9.996950156849076e-06,
|
690 |
+
"loss": 0.0052,
|
691 |
+
"reward": 1.5915122628211975,
|
692 |
+
"reward_std": 0.292996384203434,
|
693 |
+
"rewards/format_reward_rec": 1.0,
|
694 |
+
"rewards/iou_reward": 0.5915123075246811,
|
695 |
+
"step": 49
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"clip_ratio": 0.0,
|
699 |
+
"completion_length": 84.875,
|
700 |
+
"epoch": 0.0006224169695762586,
|
701 |
+
"grad_norm": 0.5157907605171204,
|
702 |
+
"kl": 0.114013671875,
|
703 |
+
"learning_rate": 9.99688791515212e-06,
|
704 |
+
"loss": 0.0046,
|
705 |
+
"reward": 1.8732710480690002,
|
706 |
+
"reward_std": 0.039826540276408195,
|
707 |
+
"rewards/format_reward_rec": 1.0,
|
708 |
+
"rewards/iou_reward": 0.8732710778713226,
|
709 |
+
"step": 50
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"clip_ratio": 0.0,
|
713 |
+
"completion_length": 88.9375,
|
714 |
+
"epoch": 0.0006348653089677837,
|
715 |
+
"grad_norm": 0.49286431074142456,
|
716 |
+
"kl": 0.13818359375,
|
717 |
+
"learning_rate": 9.996825673455162e-06,
|
718 |
+
"loss": 0.0055,
|
719 |
+
"reward": 1.7973515391349792,
|
720 |
+
"reward_std": 0.11208843067288399,
|
721 |
+
"rewards/format_reward_rec": 1.0,
|
722 |
+
"rewards/iou_reward": 0.7973516285419464,
|
723 |
+
"step": 51
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"clip_ratio": 0.0,
|
727 |
+
"completion_length": 79.53125,
|
728 |
+
"epoch": 0.0006473136483593089,
|
729 |
+
"grad_norm": 0.5944603085517883,
|
730 |
+
"kl": 0.13671875,
|
731 |
+
"learning_rate": 9.996763431758203e-06,
|
732 |
+
"loss": 0.0054,
|
733 |
+
"reward": 1.6538516283035278,
|
734 |
+
"reward_std": 0.3369443193078041,
|
735 |
+
"rewards/format_reward_rec": 0.9375,
|
736 |
+
"rewards/iou_reward": 0.7163516879081726,
|
737 |
+
"step": 52
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"clip_ratio": 0.0,
|
741 |
+
"completion_length": 86.0,
|
742 |
+
"epoch": 0.0006597619877508341,
|
743 |
+
"grad_norm": 0.5229175090789795,
|
744 |
+
"kl": 0.113525390625,
|
745 |
+
"learning_rate": 9.996701190061247e-06,
|
746 |
+
"loss": 0.0045,
|
747 |
+
"reward": 1.688271403312683,
|
748 |
+
"reward_std": 0.16166172549128532,
|
749 |
+
"rewards/format_reward_rec": 1.0,
|
750 |
+
"rewards/iou_reward": 0.6882712692022324,
|
751 |
+
"step": 53
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"clip_ratio": 0.0,
|
755 |
+
"completion_length": 76.84375,
|
756 |
+
"epoch": 0.0006722103271423592,
|
757 |
+
"grad_norm": 0.5642473697662354,
|
758 |
+
"kl": 0.13916015625,
|
759 |
+
"learning_rate": 9.996638948364289e-06,
|
760 |
+
"loss": 0.0056,
|
761 |
+
"reward": 1.757770597934723,
|
762 |
+
"reward_std": 0.1410532221198082,
|
763 |
+
"rewards/format_reward_rec": 1.0,
|
764 |
+
"rewards/iou_reward": 0.7577706277370453,
|
765 |
+
"step": 54
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"clip_ratio": 0.0,
|
769 |
+
"completion_length": 79.96875,
|
770 |
+
"epoch": 0.0006846586665338844,
|
771 |
+
"grad_norm": 0.6692479848861694,
|
772 |
+
"kl": 0.1494140625,
|
773 |
+
"learning_rate": 9.99657670666733e-06,
|
774 |
+
"loss": 0.006,
|
775 |
+
"reward": 1.5787354111671448,
|
776 |
+
"reward_std": 0.18042169511318207,
|
777 |
+
"rewards/format_reward_rec": 1.0,
|
778 |
+
"rewards/iou_reward": 0.5787354409694672,
|
779 |
+
"step": 55
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"clip_ratio": 0.0,
|
783 |
+
"completion_length": 88.4375,
|
784 |
+
"epoch": 0.0006971070059254096,
|
785 |
+
"grad_norm": 0.6885099411010742,
|
786 |
+
"kl": 0.11669921875,
|
787 |
+
"learning_rate": 9.996514464970374e-06,
|
788 |
+
"loss": 0.0047,
|
789 |
+
"reward": 1.361689031124115,
|
790 |
+
"reward_std": 0.36215692572295666,
|
791 |
+
"rewards/format_reward_rec": 0.9375,
|
792 |
+
"rewards/iou_reward": 0.4241890572011471,
|
793 |
+
"step": 56
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"clip_ratio": 0.0,
|
797 |
+
"completion_length": 89.75,
|
798 |
+
"epoch": 0.0007095553453169347,
|
799 |
+
"grad_norm": 0.474343478679657,
|
800 |
+
"kl": 0.1025390625,
|
801 |
+
"learning_rate": 9.996452223273416e-06,
|
802 |
+
"loss": 0.0041,
|
803 |
+
"reward": 1.723258912563324,
|
804 |
+
"reward_std": 0.2072291597723961,
|
805 |
+
"rewards/format_reward_rec": 1.0,
|
806 |
+
"rewards/iou_reward": 0.723258912563324,
|
807 |
+
"step": 57
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"clip_ratio": 0.0,
|
811 |
+
"completion_length": 81.59375,
|
812 |
+
"epoch": 0.0007220036847084599,
|
813 |
+
"grad_norm": 0.5668300986289978,
|
814 |
+
"kl": 0.12841796875,
|
815 |
+
"learning_rate": 9.996389981576458e-06,
|
816 |
+
"loss": 0.0052,
|
817 |
+
"reward": 1.6465070843696594,
|
818 |
+
"reward_std": 0.09229656681418419,
|
819 |
+
"rewards/format_reward_rec": 1.0,
|
820 |
+
"rewards/iou_reward": 0.6465071439743042,
|
821 |
+
"step": 58
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"clip_ratio": 0.0,
|
825 |
+
"completion_length": 86.59375,
|
826 |
+
"epoch": 0.000734452024099985,
|
827 |
+
"grad_norm": 0.8369623422622681,
|
828 |
+
"kl": 0.140625,
|
829 |
+
"learning_rate": 9.996327739879502e-06,
|
830 |
+
"loss": 0.0056,
|
831 |
+
"reward": 1.6136068105697632,
|
832 |
+
"reward_std": 0.3137252777814865,
|
833 |
+
"rewards/format_reward_rec": 0.9375,
|
834 |
+
"rewards/iou_reward": 0.6761067807674408,
|
835 |
+
"step": 59
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"clip_ratio": 0.0,
|
839 |
+
"completion_length": 78.0625,
|
840 |
+
"epoch": 0.0007469003634915102,
|
841 |
+
"grad_norm": 0.5556425452232361,
|
842 |
+
"kl": 0.15625,
|
843 |
+
"learning_rate": 9.996265498182544e-06,
|
844 |
+
"loss": 0.0063,
|
845 |
+
"reward": 1.7592704892158508,
|
846 |
+
"reward_std": 0.14777341671288013,
|
847 |
+
"rewards/format_reward_rec": 1.0,
|
848 |
+
"rewards/iou_reward": 0.759270429611206,
|
849 |
+
"step": 60
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"clip_ratio": 0.0,
|
853 |
+
"completion_length": 85.71875,
|
854 |
+
"epoch": 0.0007593487028830354,
|
855 |
+
"grad_norm": 0.5661209225654602,
|
856 |
+
"kl": 0.12939453125,
|
857 |
+
"learning_rate": 9.996203256485585e-06,
|
858 |
+
"loss": 0.0052,
|
859 |
+
"reward": 1.732073187828064,
|
860 |
+
"reward_std": 0.2148379534482956,
|
861 |
+
"rewards/format_reward_rec": 1.0,
|
862 |
+
"rewards/iou_reward": 0.7320732176303864,
|
863 |
+
"step": 61
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"clip_ratio": 0.0,
|
867 |
+
"completion_length": 78.71875,
|
868 |
+
"epoch": 0.0007717970422745605,
|
869 |
+
"grad_norm": 0.6321675777435303,
|
870 |
+
"kl": 0.1748046875,
|
871 |
+
"learning_rate": 9.996141014788629e-06,
|
872 |
+
"loss": 0.007,
|
873 |
+
"reward": 1.6298596262931824,
|
874 |
+
"reward_std": 0.21304509788751602,
|
875 |
+
"rewards/format_reward_rec": 0.96875,
|
876 |
+
"rewards/iou_reward": 0.6611096560955048,
|
877 |
+
"step": 62
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"clip_ratio": 0.0,
|
881 |
+
"completion_length": 93.71875,
|
882 |
+
"epoch": 0.0007842453816660857,
|
883 |
+
"grad_norm": 0.5161328911781311,
|
884 |
+
"kl": 0.1357421875,
|
885 |
+
"learning_rate": 9.996078773091671e-06,
|
886 |
+
"loss": 0.0054,
|
887 |
+
"reward": 1.7697656154632568,
|
888 |
+
"reward_std": 0.15015805140137672,
|
889 |
+
"rewards/format_reward_rec": 1.0,
|
890 |
+
"rewards/iou_reward": 0.769765704870224,
|
891 |
+
"step": 63
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"clip_ratio": 0.0,
|
895 |
+
"completion_length": 78.28125,
|
896 |
+
"epoch": 0.0007966937210576109,
|
897 |
+
"grad_norm": 0.5633348822593689,
|
898 |
+
"kl": 0.1611328125,
|
899 |
+
"learning_rate": 9.996016531394713e-06,
|
900 |
+
"loss": 0.0064,
|
901 |
+
"reward": 1.4602358937263489,
|
902 |
+
"reward_std": 0.115456972271204,
|
903 |
+
"rewards/format_reward_rec": 1.0,
|
904 |
+
"rewards/iou_reward": 0.4602358639240265,
|
905 |
+
"step": 64
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"clip_ratio": 0.0,
|
909 |
+
"completion_length": 87.46875,
|
910 |
+
"epoch": 0.000809142060449136,
|
911 |
+
"grad_norm": 0.6145336031913757,
|
912 |
+
"kl": 0.12646484375,
|
913 |
+
"learning_rate": 9.995954289697755e-06,
|
914 |
+
"loss": 0.0051,
|
915 |
+
"reward": 1.716072678565979,
|
916 |
+
"reward_std": 0.27911266684532166,
|
917 |
+
"rewards/format_reward_rec": 0.96875,
|
918 |
+
"rewards/iou_reward": 0.747322678565979,
|
919 |
+
"step": 65
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"clip_ratio": 0.0,
|
923 |
+
"completion_length": 89.6875,
|
924 |
+
"epoch": 0.0008215903998406612,
|
925 |
+
"grad_norm": 0.5064393281936646,
|
926 |
+
"kl": 0.115966796875,
|
927 |
+
"learning_rate": 9.995892048000796e-06,
|
928 |
+
"loss": 0.0046,
|
929 |
+
"reward": 1.5941734313964844,
|
930 |
+
"reward_std": 0.1153794713318348,
|
931 |
+
"rewards/format_reward_rec": 1.0,
|
932 |
+
"rewards/iou_reward": 0.5941733419895172,
|
933 |
+
"step": 66
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"clip_ratio": 0.0,
|
937 |
+
"completion_length": 80.34375,
|
938 |
+
"epoch": 0.0008340387392321865,
|
939 |
+
"grad_norm": 0.502927303314209,
|
940 |
+
"kl": 0.140625,
|
941 |
+
"learning_rate": 9.99582980630384e-06,
|
942 |
+
"loss": 0.0056,
|
943 |
+
"reward": 1.737270712852478,
|
944 |
+
"reward_std": 0.09697960317134857,
|
945 |
+
"rewards/format_reward_rec": 1.0,
|
946 |
+
"rewards/iou_reward": 0.7372707426548004,
|
947 |
+
"step": 67
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"clip_ratio": 0.0,
|
951 |
+
"completion_length": 79.75,
|
952 |
+
"epoch": 0.0008464870786237116,
|
953 |
+
"grad_norm": 0.5995090007781982,
|
954 |
+
"kl": 0.1298828125,
|
955 |
+
"learning_rate": 9.995767564606882e-06,
|
956 |
+
"loss": 0.0052,
|
957 |
+
"reward": 1.6859315037727356,
|
958 |
+
"reward_std": 0.10032923426479101,
|
959 |
+
"rewards/format_reward_rec": 1.0,
|
960 |
+
"rewards/iou_reward": 0.6859315186738968,
|
961 |
+
"step": 68
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"clip_ratio": 0.0,
|
965 |
+
"completion_length": 91.15625,
|
966 |
+
"epoch": 0.0008589354180152368,
|
967 |
+
"grad_norm": 0.4770706295967102,
|
968 |
+
"kl": 0.10986328125,
|
969 |
+
"learning_rate": 9.995705322909924e-06,
|
970 |
+
"loss": 0.0044,
|
971 |
+
"reward": 1.5923967361450195,
|
972 |
+
"reward_std": 0.17281262017786503,
|
973 |
+
"rewards/format_reward_rec": 1.0,
|
974 |
+
"rewards/iou_reward": 0.5923967510461807,
|
975 |
+
"step": 69
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"clip_ratio": 0.0,
|
979 |
+
"completion_length": 84.3125,
|
980 |
+
"epoch": 0.000871383757406762,
|
981 |
+
"grad_norm": 0.5044773817062378,
|
982 |
+
"kl": 0.1328125,
|
983 |
+
"learning_rate": 9.995643081212967e-06,
|
984 |
+
"loss": 0.0053,
|
985 |
+
"reward": 1.5754359364509583,
|
986 |
+
"reward_std": 0.17663145437836647,
|
987 |
+
"rewards/format_reward_rec": 1.0,
|
988 |
+
"rewards/iou_reward": 0.5754359662532806,
|
989 |
+
"step": 70
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"clip_ratio": 0.0,
|
993 |
+
"completion_length": 69.8125,
|
994 |
+
"epoch": 0.0008838320967982871,
|
995 |
+
"grad_norm": 0.5421180725097656,
|
996 |
+
"kl": 0.14794921875,
|
997 |
+
"learning_rate": 9.99558083951601e-06,
|
998 |
+
"loss": 0.0059,
|
999 |
+
"reward": 1.800459086894989,
|
1000 |
+
"reward_std": 0.07165651768445969,
|
1001 |
+
"rewards/format_reward_rec": 1.0,
|
1002 |
+
"rewards/iou_reward": 0.8004591166973114,
|
1003 |
+
"step": 71
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"clip_ratio": 0.0,
|
1007 |
+
"completion_length": 84.65625,
|
1008 |
+
"epoch": 0.0008962804361898123,
|
1009 |
+
"grad_norm": 0.5785159468650818,
|
1010 |
+
"kl": 0.1337890625,
|
1011 |
+
"learning_rate": 9.995518597819051e-06,
|
1012 |
+
"loss": 0.0054,
|
1013 |
+
"reward": 1.6627878546714783,
|
1014 |
+
"reward_std": 0.26127464324235916,
|
1015 |
+
"rewards/format_reward_rec": 1.0,
|
1016 |
+
"rewards/iou_reward": 0.6627878248691559,
|
1017 |
+
"step": 72
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"clip_ratio": 0.0,
|
1021 |
+
"completion_length": 73.625,
|
1022 |
+
"epoch": 0.0009087287755813375,
|
1023 |
+
"grad_norm": 0.5469045042991638,
|
1024 |
+
"kl": 0.11474609375,
|
1025 |
+
"learning_rate": 9.995456356122095e-06,
|
1026 |
+
"loss": 0.0046,
|
1027 |
+
"reward": 1.7520496249198914,
|
1028 |
+
"reward_std": 0.15470531303435564,
|
1029 |
+
"rewards/format_reward_rec": 1.0,
|
1030 |
+
"rewards/iou_reward": 0.7520496249198914,
|
1031 |
+
"step": 73
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"clip_ratio": 0.0,
|
1035 |
+
"completion_length": 72.15625,
|
1036 |
+
"epoch": 0.0009211771149728626,
|
1037 |
+
"grad_norm": 0.5782791972160339,
|
1038 |
+
"kl": 0.15185546875,
|
1039 |
+
"learning_rate": 9.995394114425137e-06,
|
1040 |
+
"loss": 0.0061,
|
1041 |
+
"reward": 1.6950392723083496,
|
1042 |
+
"reward_std": 0.20423278957605362,
|
1043 |
+
"rewards/format_reward_rec": 0.96875,
|
1044 |
+
"rewards/iou_reward": 0.726289302110672,
|
1045 |
+
"step": 74
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"clip_ratio": 0.0,
|
1049 |
+
"completion_length": 70.3125,
|
1050 |
+
"epoch": 0.0009336254543643878,
|
1051 |
+
"grad_norm": 0.5352646112442017,
|
1052 |
+
"kl": 0.1396484375,
|
1053 |
+
"learning_rate": 9.995331872728178e-06,
|
1054 |
+
"loss": 0.0056,
|
1055 |
+
"reward": 1.8100340962409973,
|
1056 |
+
"reward_std": 0.07194224745035172,
|
1057 |
+
"rewards/format_reward_rec": 1.0,
|
1058 |
+
"rewards/iou_reward": 0.8100341260433197,
|
1059 |
+
"step": 75
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"clip_ratio": 0.0,
|
1063 |
+
"completion_length": 73.625,
|
1064 |
+
"epoch": 0.000946073793755913,
|
1065 |
+
"grad_norm": 0.5901323556900024,
|
1066 |
+
"kl": 0.1396484375,
|
1067 |
+
"learning_rate": 9.995269631031222e-06,
|
1068 |
+
"loss": 0.0056,
|
1069 |
+
"reward": 1.9025427103042603,
|
1070 |
+
"reward_std": 0.09781728684902191,
|
1071 |
+
"rewards/format_reward_rec": 1.0,
|
1072 |
+
"rewards/iou_reward": 0.902542769908905,
|
1073 |
+
"step": 76
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"clip_ratio": 0.0,
|
1077 |
+
"completion_length": 76.0625,
|
1078 |
+
"epoch": 0.0009585221331474381,
|
1079 |
+
"grad_norm": 0.5916361212730408,
|
1080 |
+
"kl": 0.14111328125,
|
1081 |
+
"learning_rate": 9.995207389334264e-06,
|
1082 |
+
"loss": 0.0056,
|
1083 |
+
"reward": 1.637428343296051,
|
1084 |
+
"reward_std": 0.2861202023923397,
|
1085 |
+
"rewards/format_reward_rec": 1.0,
|
1086 |
+
"rewards/iou_reward": 0.6374283134937286,
|
1087 |
+
"step": 77
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"clip_ratio": 0.0,
|
1091 |
+
"completion_length": 78.0,
|
1092 |
+
"epoch": 0.0009709704725389633,
|
1093 |
+
"grad_norm": 0.534542441368103,
|
1094 |
+
"kl": 0.12890625,
|
1095 |
+
"learning_rate": 9.995145147637306e-06,
|
1096 |
+
"loss": 0.0052,
|
1097 |
+
"reward": 1.5602301359176636,
|
1098 |
+
"reward_std": 0.26418060809373856,
|
1099 |
+
"rewards/format_reward_rec": 1.0,
|
1100 |
+
"rewards/iou_reward": 0.560230165719986,
|
1101 |
+
"step": 78
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"clip_ratio": 0.0,
|
1105 |
+
"completion_length": 80.78125,
|
1106 |
+
"epoch": 0.0009834188119304886,
|
1107 |
+
"grad_norm": 0.5377347469329834,
|
1108 |
+
"kl": 0.1337890625,
|
1109 |
+
"learning_rate": 9.99508290594035e-06,
|
1110 |
+
"loss": 0.0054,
|
1111 |
+
"reward": 1.7412559986114502,
|
1112 |
+
"reward_std": 0.19341769814491272,
|
1113 |
+
"rewards/format_reward_rec": 1.0,
|
1114 |
+
"rewards/iou_reward": 0.7412559390068054,
|
1115 |
+
"step": 79
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"clip_ratio": 0.0,
|
1119 |
+
"completion_length": 83.09375,
|
1120 |
+
"epoch": 0.0009958671513220136,
|
1121 |
+
"grad_norm": 0.5326669812202454,
|
1122 |
+
"kl": 0.1416015625,
|
1123 |
+
"learning_rate": 9.995020664243391e-06,
|
1124 |
+
"loss": 0.0057,
|
1125 |
+
"reward": 1.6354157328605652,
|
1126 |
+
"reward_std": 0.09996325895190239,
|
1127 |
+
"rewards/format_reward_rec": 1.0,
|
1128 |
+
"rewards/iou_reward": 0.6354157030582428,
|
1129 |
+
"step": 80
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"clip_ratio": 0.0,
|
1133 |
+
"completion_length": 74.375,
|
1134 |
+
"epoch": 0.001008315490713539,
|
1135 |
+
"grad_norm": 0.5222757458686829,
|
1136 |
+
"kl": 0.14599609375,
|
1137 |
+
"learning_rate": 9.994958422546433e-06,
|
1138 |
+
"loss": 0.0058,
|
1139 |
+
"reward": 1.8184998631477356,
|
1140 |
+
"reward_std": 0.21548935770988464,
|
1141 |
+
"rewards/format_reward_rec": 1.0,
|
1142 |
+
"rewards/iou_reward": 0.8184998333454132,
|
1143 |
+
"step": 81
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"clip_ratio": 0.0,
|
1147 |
+
"completion_length": 76.90625,
|
1148 |
+
"epoch": 0.001020763830105064,
|
1149 |
+
"grad_norm": 0.5388038158416748,
|
1150 |
+
"kl": 0.158203125,
|
1151 |
+
"learning_rate": 9.994896180849477e-06,
|
1152 |
+
"loss": 0.0063,
|
1153 |
+
"reward": 1.760369062423706,
|
1154 |
+
"reward_std": 0.20370811223983765,
|
1155 |
+
"rewards/format_reward_rec": 1.0,
|
1156 |
+
"rewards/iou_reward": 0.7603690922260284,
|
1157 |
+
"step": 82
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"clip_ratio": 0.0,
|
1161 |
+
"completion_length": 77.96875,
|
1162 |
+
"epoch": 0.0010332121694965892,
|
1163 |
+
"grad_norm": 0.6683233380317688,
|
1164 |
+
"kl": 0.14599609375,
|
1165 |
+
"learning_rate": 9.994833939152517e-06,
|
1166 |
+
"loss": 0.0058,
|
1167 |
+
"reward": 1.6503952145576477,
|
1168 |
+
"reward_std": 0.28510017693042755,
|
1169 |
+
"rewards/format_reward_rec": 0.96875,
|
1170 |
+
"rewards/iou_reward": 0.6816451847553253,
|
1171 |
+
"step": 83
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"clip_ratio": 0.0,
|
1175 |
+
"completion_length": 76.5,
|
1176 |
+
"epoch": 0.0010456605088881143,
|
1177 |
+
"grad_norm": 0.8178681135177612,
|
1178 |
+
"kl": 0.17626953125,
|
1179 |
+
"learning_rate": 9.99477169745556e-06,
|
1180 |
+
"loss": 0.007,
|
1181 |
+
"reward": 1.8033937811851501,
|
1182 |
+
"reward_std": 0.11837778985500336,
|
1183 |
+
"rewards/format_reward_rec": 1.0,
|
1184 |
+
"rewards/iou_reward": 0.8033937513828278,
|
1185 |
+
"step": 84
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"clip_ratio": 0.0,
|
1189 |
+
"completion_length": 75.4375,
|
1190 |
+
"epoch": 0.0010581088482796396,
|
1191 |
+
"grad_norm": 0.6322414875030518,
|
1192 |
+
"kl": 0.1943359375,
|
1193 |
+
"learning_rate": 9.994709455758602e-06,
|
1194 |
+
"loss": 0.0078,
|
1195 |
+
"reward": 1.789516270160675,
|
1196 |
+
"reward_std": 0.1459340425208211,
|
1197 |
+
"rewards/format_reward_rec": 0.96875,
|
1198 |
+
"rewards/iou_reward": 0.8207662999629974,
|
1199 |
+
"step": 85
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"clip_ratio": 0.0,
|
1203 |
+
"completion_length": 73.625,
|
1204 |
+
"epoch": 0.0010705571876711646,
|
1205 |
+
"grad_norm": 0.7803683876991272,
|
1206 |
+
"kl": 0.1806640625,
|
1207 |
+
"learning_rate": 9.994647214061644e-06,
|
1208 |
+
"loss": 0.0072,
|
1209 |
+
"reward": 1.580109417438507,
|
1210 |
+
"reward_std": 0.17563226073980331,
|
1211 |
+
"rewards/format_reward_rec": 1.0,
|
1212 |
+
"rewards/iou_reward": 0.5801093876361847,
|
1213 |
+
"step": 86
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"clip_ratio": 0.0,
|
1217 |
+
"completion_length": 68.375,
|
1218 |
+
"epoch": 0.0010830055270626899,
|
1219 |
+
"grad_norm": 0.497260719537735,
|
1220 |
+
"kl": 0.14697265625,
|
1221 |
+
"learning_rate": 9.994584972364688e-06,
|
1222 |
+
"loss": 0.0059,
|
1223 |
+
"reward": 1.6402252912521362,
|
1224 |
+
"reward_std": 0.11211172491312027,
|
1225 |
+
"rewards/format_reward_rec": 1.0,
|
1226 |
+
"rewards/iou_reward": 0.6402253359556198,
|
1227 |
+
"step": 87
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"clip_ratio": 0.0,
|
1231 |
+
"completion_length": 76.375,
|
1232 |
+
"epoch": 0.001095453866454215,
|
1233 |
+
"grad_norm": 0.5990146398544312,
|
1234 |
+
"kl": 0.17041015625,
|
1235 |
+
"learning_rate": 9.99452273066773e-06,
|
1236 |
+
"loss": 0.0068,
|
1237 |
+
"reward": 1.7737177610397339,
|
1238 |
+
"reward_std": 0.11195245012640953,
|
1239 |
+
"rewards/format_reward_rec": 1.0,
|
1240 |
+
"rewards/iou_reward": 0.7737177312374115,
|
1241 |
+
"step": 88
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"clip_ratio": 0.0,
|
1245 |
+
"completion_length": 90.3125,
|
1246 |
+
"epoch": 0.0011079022058457402,
|
1247 |
+
"grad_norm": 0.579544186592102,
|
1248 |
+
"kl": 0.14794921875,
|
1249 |
+
"learning_rate": 9.994460488970771e-06,
|
1250 |
+
"loss": 0.0059,
|
1251 |
+
"reward": 1.4342612028121948,
|
1252 |
+
"reward_std": 0.22582250833511353,
|
1253 |
+
"rewards/format_reward_rec": 0.96875,
|
1254 |
+
"rewards/iou_reward": 0.465511217713356,
|
1255 |
+
"step": 89
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"clip_ratio": 0.0,
|
1259 |
+
"completion_length": 71.5625,
|
1260 |
+
"epoch": 0.0011203505452372653,
|
1261 |
+
"grad_norm": 0.626300573348999,
|
1262 |
+
"kl": 0.15185546875,
|
1263 |
+
"learning_rate": 9.994398247273815e-06,
|
1264 |
+
"loss": 0.0061,
|
1265 |
+
"reward": 1.830142080783844,
|
1266 |
+
"reward_std": 0.09023091197013855,
|
1267 |
+
"rewards/format_reward_rec": 1.0,
|
1268 |
+
"rewards/iou_reward": 0.830142080783844,
|
1269 |
+
"step": 90
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"clip_ratio": 0.0,
|
1273 |
+
"completion_length": 70.4375,
|
1274 |
+
"epoch": 0.0011327988846287905,
|
1275 |
+
"grad_norm": 0.530746340751648,
|
1276 |
+
"kl": 0.162109375,
|
1277 |
+
"learning_rate": 9.994336005576857e-06,
|
1278 |
+
"loss": 0.0065,
|
1279 |
+
"reward": 1.7541658282279968,
|
1280 |
+
"reward_std": 0.22513454407453537,
|
1281 |
+
"rewards/format_reward_rec": 1.0,
|
1282 |
+
"rewards/iou_reward": 0.754165768623352,
|
1283 |
+
"step": 91
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"clip_ratio": 0.0,
|
1287 |
+
"completion_length": 80.75,
|
1288 |
+
"epoch": 0.0011452472240203156,
|
1289 |
+
"grad_norm": 0.729465126991272,
|
1290 |
+
"kl": 0.1552734375,
|
1291 |
+
"learning_rate": 9.994273763879899e-06,
|
1292 |
+
"loss": 0.0062,
|
1293 |
+
"reward": 1.4567736983299255,
|
1294 |
+
"reward_std": 0.3039446175098419,
|
1295 |
+
"rewards/format_reward_rec": 0.96875,
|
1296 |
+
"rewards/iou_reward": 0.48802371323108673,
|
1297 |
+
"step": 92
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"clip_ratio": 0.0,
|
1301 |
+
"completion_length": 77.03125,
|
1302 |
+
"epoch": 0.0011576955634118409,
|
1303 |
+
"grad_norm": 0.747829020023346,
|
1304 |
+
"kl": 0.19482421875,
|
1305 |
+
"learning_rate": 9.994211522182942e-06,
|
1306 |
+
"loss": 0.0078,
|
1307 |
+
"reward": 1.6674769520759583,
|
1308 |
+
"reward_std": 0.36814084649086,
|
1309 |
+
"rewards/format_reward_rec": 0.9375,
|
1310 |
+
"rewards/iou_reward": 0.7299769520759583,
|
1311 |
+
"step": 93
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"clip_ratio": 0.0,
|
1315 |
+
"completion_length": 73.1875,
|
1316 |
+
"epoch": 0.001170143902803366,
|
1317 |
+
"grad_norm": 0.7084731459617615,
|
1318 |
+
"kl": 0.14501953125,
|
1319 |
+
"learning_rate": 9.994149280485984e-06,
|
1320 |
+
"loss": 0.0058,
|
1321 |
+
"reward": 1.8480735421180725,
|
1322 |
+
"reward_std": 0.19576817378401756,
|
1323 |
+
"rewards/format_reward_rec": 0.96875,
|
1324 |
+
"rewards/iou_reward": 0.8793235719203949,
|
1325 |
+
"step": 94
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"clip_ratio": 0.0,
|
1329 |
+
"completion_length": 80.0,
|
1330 |
+
"epoch": 0.0011825922421948912,
|
1331 |
+
"grad_norm": 0.6167282462120056,
|
1332 |
+
"kl": 0.14404296875,
|
1333 |
+
"learning_rate": 9.994087038789026e-06,
|
1334 |
+
"loss": 0.0058,
|
1335 |
+
"reward": 1.7454318404197693,
|
1336 |
+
"reward_std": 0.0950808608904481,
|
1337 |
+
"rewards/format_reward_rec": 1.0,
|
1338 |
+
"rewards/iou_reward": 0.7454318404197693,
|
1339 |
+
"step": 95
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"clip_ratio": 0.0,
|
1343 |
+
"completion_length": 85.375,
|
1344 |
+
"epoch": 0.0011950405815864165,
|
1345 |
+
"grad_norm": 0.6630386114120483,
|
1346 |
+
"kl": 0.1318359375,
|
1347 |
+
"learning_rate": 9.99402479709207e-06,
|
1348 |
+
"loss": 0.0053,
|
1349 |
+
"reward": 1.800285816192627,
|
1350 |
+
"reward_std": 0.22147530317306519,
|
1351 |
+
"rewards/format_reward_rec": 1.0,
|
1352 |
+
"rewards/iou_reward": 0.8002857863903046,
|
1353 |
+
"step": 96
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"clip_ratio": 0.0,
|
1357 |
+
"completion_length": 76.5,
|
1358 |
+
"epoch": 0.0012074889209779415,
|
1359 |
+
"grad_norm": 0.6420366168022156,
|
1360 |
+
"kl": 0.166015625,
|
1361 |
+
"learning_rate": 9.993962555395111e-06,
|
1362 |
+
"loss": 0.0066,
|
1363 |
+
"reward": 1.8380752205848694,
|
1364 |
+
"reward_std": 0.15962522476911545,
|
1365 |
+
"rewards/format_reward_rec": 1.0,
|
1366 |
+
"rewards/iou_reward": 0.8380752801895142,
|
1367 |
+
"step": 97
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"clip_ratio": 0.0,
|
1371 |
+
"completion_length": 81.28125,
|
1372 |
+
"epoch": 0.0012199372603694668,
|
1373 |
+
"grad_norm": 0.5716676115989685,
|
1374 |
+
"kl": 0.140625,
|
1375 |
+
"learning_rate": 9.993900313698153e-06,
|
1376 |
+
"loss": 0.0056,
|
1377 |
+
"reward": 1.7347316145896912,
|
1378 |
+
"reward_std": 0.14502982422709465,
|
1379 |
+
"rewards/format_reward_rec": 1.0,
|
1380 |
+
"rewards/iou_reward": 0.7347316443920135,
|
1381 |
+
"step": 98
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"clip_ratio": 0.0,
|
1385 |
+
"completion_length": 77.40625,
|
1386 |
+
"epoch": 0.0012323855997609919,
|
1387 |
+
"grad_norm": 0.6021421551704407,
|
1388 |
+
"kl": 0.13916015625,
|
1389 |
+
"learning_rate": 9.993838072001197e-06,
|
1390 |
+
"loss": 0.0056,
|
1391 |
+
"reward": 1.6757659316062927,
|
1392 |
+
"reward_std": 0.21641412377357483,
|
1393 |
+
"rewards/format_reward_rec": 1.0,
|
1394 |
+
"rewards/iou_reward": 0.6757659018039703,
|
1395 |
+
"step": 99
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"clip_ratio": 0.0,
|
1399 |
+
"completion_length": 73.84375,
|
1400 |
+
"epoch": 0.0012448339391525171,
|
1401 |
+
"grad_norm": 0.5074762105941772,
|
1402 |
+
"kl": 0.1884765625,
|
1403 |
+
"learning_rate": 9.993775830304239e-06,
|
1404 |
+
"loss": 0.0075,
|
1405 |
+
"reward": 1.7514841556549072,
|
1406 |
+
"reward_std": 0.17918928153812885,
|
1407 |
+
"rewards/format_reward_rec": 0.96875,
|
1408 |
+
"rewards/iou_reward": 0.7827341556549072,
|
1409 |
+
"step": 100
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"clip_ratio": 0.0,
|
1413 |
+
"completion_length": 73.125,
|
1414 |
+
"epoch": 0.0012572822785440422,
|
1415 |
+
"grad_norm": 0.5177865624427795,
|
1416 |
+
"kl": 0.128662109375,
|
1417 |
+
"learning_rate": 9.99371358860728e-06,
|
1418 |
+
"loss": 0.0051,
|
1419 |
+
"reward": 1.786689281463623,
|
1420 |
+
"reward_std": 0.14574366062879562,
|
1421 |
+
"rewards/format_reward_rec": 1.0,
|
1422 |
+
"rewards/iou_reward": 0.7866893112659454,
|
1423 |
+
"step": 101
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"clip_ratio": 0.0,
|
1427 |
+
"completion_length": 75.65625,
|
1428 |
+
"epoch": 0.0012697306179355675,
|
1429 |
+
"grad_norm": 0.5310884714126587,
|
1430 |
+
"kl": 0.1455078125,
|
1431 |
+
"learning_rate": 9.993651346910322e-06,
|
1432 |
+
"loss": 0.0058,
|
1433 |
+
"reward": 1.7609416246414185,
|
1434 |
+
"reward_std": 0.16141251474618912,
|
1435 |
+
"rewards/format_reward_rec": 1.0,
|
1436 |
+
"rewards/iou_reward": 0.7609416246414185,
|
1437 |
+
"step": 102
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"clip_ratio": 0.0,
|
1441 |
+
"completion_length": 74.28125,
|
1442 |
+
"epoch": 0.0012821789573270925,
|
1443 |
+
"grad_norm": 0.6390679478645325,
|
1444 |
+
"kl": 0.15283203125,
|
1445 |
+
"learning_rate": 9.993589105213364e-06,
|
1446 |
+
"loss": 0.0061,
|
1447 |
+
"reward": 1.894408941268921,
|
1448 |
+
"reward_std": 0.09809810575097799,
|
1449 |
+
"rewards/format_reward_rec": 1.0,
|
1450 |
+
"rewards/iou_reward": 0.8944090008735657,
|
1451 |
+
"step": 103
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"clip_ratio": 0.0,
|
1455 |
+
"completion_length": 78.46875,
|
1456 |
+
"epoch": 0.0012946272967186178,
|
1457 |
+
"grad_norm": 0.6070464849472046,
|
1458 |
+
"kl": 0.173828125,
|
1459 |
+
"learning_rate": 9.993526863516408e-06,
|
1460 |
+
"loss": 0.007,
|
1461 |
+
"reward": 1.7859740853309631,
|
1462 |
+
"reward_std": 0.11464018002152443,
|
1463 |
+
"rewards/format_reward_rec": 1.0,
|
1464 |
+
"rewards/iou_reward": 0.7859741151332855,
|
1465 |
+
"step": 104
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"clip_ratio": 0.0,
|
1469 |
+
"completion_length": 87.875,
|
1470 |
+
"epoch": 0.0013070756361101428,
|
1471 |
+
"grad_norm": 0.5264771580696106,
|
1472 |
+
"kl": 0.116943359375,
|
1473 |
+
"learning_rate": 9.99346462181945e-06,
|
1474 |
+
"loss": 0.0047,
|
1475 |
+
"reward": 1.7116284370422363,
|
1476 |
+
"reward_std": 0.19027460366487503,
|
1477 |
+
"rewards/format_reward_rec": 1.0,
|
1478 |
+
"rewards/iou_reward": 0.7116283774375916,
|
1479 |
+
"step": 105
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"clip_ratio": 0.0,
|
1483 |
+
"completion_length": 75.46875,
|
1484 |
+
"epoch": 0.0013195239755016681,
|
1485 |
+
"grad_norm": 0.5975978970527649,
|
1486 |
+
"kl": 0.15576171875,
|
1487 |
+
"learning_rate": 9.993402380122492e-06,
|
1488 |
+
"loss": 0.0062,
|
1489 |
+
"reward": 1.693192720413208,
|
1490 |
+
"reward_std": 0.23123470693826675,
|
1491 |
+
"rewards/format_reward_rec": 1.0,
|
1492 |
+
"rewards/iou_reward": 0.6931926906108856,
|
1493 |
+
"step": 106
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"clip_ratio": 0.0,
|
1497 |
+
"completion_length": 83.96875,
|
1498 |
+
"epoch": 0.0013319723148931932,
|
1499 |
+
"grad_norm": 0.49909281730651855,
|
1500 |
+
"kl": 0.150390625,
|
1501 |
+
"learning_rate": 9.993340138425535e-06,
|
1502 |
+
"loss": 0.006,
|
1503 |
+
"reward": 1.4939433932304382,
|
1504 |
+
"reward_std": 0.23037827014923096,
|
1505 |
+
"rewards/format_reward_rec": 1.0,
|
1506 |
+
"rewards/iou_reward": 0.49394336342811584,
|
1507 |
+
"step": 107
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"clip_ratio": 0.0,
|
1511 |
+
"completion_length": 77.71875,
|
1512 |
+
"epoch": 0.0013444206542847185,
|
1513 |
+
"grad_norm": 0.5423364639282227,
|
1514 |
+
"kl": 0.15478515625,
|
1515 |
+
"learning_rate": 9.993277896728577e-06,
|
1516 |
+
"loss": 0.0062,
|
1517 |
+
"reward": 1.6659827828407288,
|
1518 |
+
"reward_std": 0.1452256366610527,
|
1519 |
+
"rewards/format_reward_rec": 1.0,
|
1520 |
+
"rewards/iou_reward": 0.6659828424453735,
|
1521 |
+
"step": 108
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"clip_ratio": 0.0,
|
1525 |
+
"completion_length": 80.03125,
|
1526 |
+
"epoch": 0.0013568689936762435,
|
1527 |
+
"grad_norm": 0.4949978291988373,
|
1528 |
+
"kl": 0.12939453125,
|
1529 |
+
"learning_rate": 9.993215655031619e-06,
|
1530 |
+
"loss": 0.0052,
|
1531 |
+
"reward": 1.6230355501174927,
|
1532 |
+
"reward_std": 0.18467745929956436,
|
1533 |
+
"rewards/format_reward_rec": 1.0,
|
1534 |
+
"rewards/iou_reward": 0.6230354905128479,
|
1535 |
+
"step": 109
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"clip_ratio": 0.0,
|
1539 |
+
"completion_length": 77.25,
|
1540 |
+
"epoch": 0.0013693173330677688,
|
1541 |
+
"grad_norm": 0.5784613490104675,
|
1542 |
+
"kl": 0.11962890625,
|
1543 |
+
"learning_rate": 9.993153413334662e-06,
|
1544 |
+
"loss": 0.0048,
|
1545 |
+
"reward": 1.7517021894454956,
|
1546 |
+
"reward_std": 0.15935295075178146,
|
1547 |
+
"rewards/format_reward_rec": 1.0,
|
1548 |
+
"rewards/iou_reward": 0.7517021894454956,
|
1549 |
+
"step": 110
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"clip_ratio": 0.0,
|
1553 |
+
"completion_length": 85.4375,
|
1554 |
+
"epoch": 0.0013817656724592938,
|
1555 |
+
"grad_norm": 0.4976905286312103,
|
1556 |
+
"kl": 0.154296875,
|
1557 |
+
"learning_rate": 9.993091171637704e-06,
|
1558 |
+
"loss": 0.0062,
|
1559 |
+
"reward": 1.6756169199943542,
|
1560 |
+
"reward_std": 0.16474511474370956,
|
1561 |
+
"rewards/format_reward_rec": 0.96875,
|
1562 |
+
"rewards/iou_reward": 0.7068668603897095,
|
1563 |
+
"step": 111
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"clip_ratio": 0.0,
|
1567 |
+
"completion_length": 86.40625,
|
1568 |
+
"epoch": 0.0013942140118508191,
|
1569 |
+
"grad_norm": 0.4809585511684418,
|
1570 |
+
"kl": 0.139404296875,
|
1571 |
+
"learning_rate": 9.993028929940746e-06,
|
1572 |
+
"loss": 0.0056,
|
1573 |
+
"reward": 1.6836587190628052,
|
1574 |
+
"reward_std": 0.16580590046942234,
|
1575 |
+
"rewards/format_reward_rec": 1.0,
|
1576 |
+
"rewards/iou_reward": 0.6836587190628052,
|
1577 |
+
"step": 112
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"clip_ratio": 0.0,
|
1581 |
+
"completion_length": 84.84375,
|
1582 |
+
"epoch": 0.0014066623512423442,
|
1583 |
+
"grad_norm": 0.5611812472343445,
|
1584 |
+
"kl": 0.12060546875,
|
1585 |
+
"learning_rate": 9.99296668824379e-06,
|
1586 |
+
"loss": 0.0048,
|
1587 |
+
"reward": 1.707568645477295,
|
1588 |
+
"reward_std": 0.4278259873390198,
|
1589 |
+
"rewards/format_reward_rec": 0.96875,
|
1590 |
+
"rewards/iou_reward": 0.7388187050819397,
|
1591 |
+
"step": 113
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"clip_ratio": 0.0,
|
1595 |
+
"completion_length": 81.625,
|
1596 |
+
"epoch": 0.0014191106906338694,
|
1597 |
+
"grad_norm": 0.5960983633995056,
|
1598 |
+
"kl": 0.16552734375,
|
1599 |
+
"learning_rate": 9.992904446546832e-06,
|
1600 |
+
"loss": 0.0066,
|
1601 |
+
"reward": 1.8632564544677734,
|
1602 |
+
"reward_std": 0.08219528943300247,
|
1603 |
+
"rewards/format_reward_rec": 1.0,
|
1604 |
+
"rewards/iou_reward": 0.8632563948631287,
|
1605 |
+
"step": 114
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"clip_ratio": 0.0,
|
1609 |
+
"completion_length": 77.46875,
|
1610 |
+
"epoch": 0.0014315590300253947,
|
1611 |
+
"grad_norm": 0.6228426098823547,
|
1612 |
+
"kl": 0.17138671875,
|
1613 |
+
"learning_rate": 9.992842204849874e-06,
|
1614 |
+
"loss": 0.0069,
|
1615 |
+
"reward": 1.8939569592475891,
|
1616 |
+
"reward_std": 0.05686322785913944,
|
1617 |
+
"rewards/format_reward_rec": 1.0,
|
1618 |
+
"rewards/iou_reward": 0.8939569890499115,
|
1619 |
+
"step": 115
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"clip_ratio": 0.0,
|
1623 |
+
"completion_length": 79.4375,
|
1624 |
+
"epoch": 0.0014440073694169198,
|
1625 |
+
"grad_norm": 0.5188966989517212,
|
1626 |
+
"kl": 0.15625,
|
1627 |
+
"learning_rate": 9.992779963152917e-06,
|
1628 |
+
"loss": 0.0063,
|
1629 |
+
"reward": 1.8855347633361816,
|
1630 |
+
"reward_std": 0.08866238407790661,
|
1631 |
+
"rewards/format_reward_rec": 1.0,
|
1632 |
+
"rewards/iou_reward": 0.8855347335338593,
|
1633 |
+
"step": 116
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"clip_ratio": 0.0,
|
1637 |
+
"completion_length": 76.25,
|
1638 |
+
"epoch": 0.001456455708808445,
|
1639 |
+
"grad_norm": 0.5806636214256287,
|
1640 |
+
"kl": 0.16650390625,
|
1641 |
+
"learning_rate": 9.992717721455959e-06,
|
1642 |
+
"loss": 0.0067,
|
1643 |
+
"reward": 1.6434407830238342,
|
1644 |
+
"reward_std": 0.1430330127477646,
|
1645 |
+
"rewards/format_reward_rec": 1.0,
|
1646 |
+
"rewards/iou_reward": 0.6434408128261566,
|
1647 |
+
"step": 117
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"clip_ratio": 0.0,
|
1651 |
+
"completion_length": 80.625,
|
1652 |
+
"epoch": 0.00146890404819997,
|
1653 |
+
"grad_norm": 0.5318806767463684,
|
1654 |
+
"kl": 0.15380859375,
|
1655 |
+
"learning_rate": 9.992655479759e-06,
|
1656 |
+
"loss": 0.0061,
|
1657 |
+
"reward": 1.5443456172943115,
|
1658 |
+
"reward_std": 0.2518259510397911,
|
1659 |
+
"rewards/format_reward_rec": 1.0,
|
1660 |
+
"rewards/iou_reward": 0.5443456172943115,
|
1661 |
+
"step": 118
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"clip_ratio": 0.0,
|
1665 |
+
"completion_length": 86.0,
|
1666 |
+
"epoch": 0.0014813523875914954,
|
1667 |
+
"grad_norm": 0.4761650264263153,
|
1668 |
+
"kl": 0.1474609375,
|
1669 |
+
"learning_rate": 9.992593238062044e-06,
|
1670 |
+
"loss": 0.0059,
|
1671 |
+
"reward": 1.7887638807296753,
|
1672 |
+
"reward_std": 0.11934101954102516,
|
1673 |
+
"rewards/format_reward_rec": 1.0,
|
1674 |
+
"rewards/iou_reward": 0.7887638509273529,
|
1675 |
+
"step": 119
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"clip_ratio": 0.0,
|
1679 |
+
"completion_length": 87.875,
|
1680 |
+
"epoch": 0.0014938007269830204,
|
1681 |
+
"grad_norm": 0.5443623661994934,
|
1682 |
+
"kl": 0.15478515625,
|
1683 |
+
"learning_rate": 9.992530996365085e-06,
|
1684 |
+
"loss": 0.0062,
|
1685 |
+
"reward": 1.6878383159637451,
|
1686 |
+
"reward_std": 0.29080618917942047,
|
1687 |
+
"rewards/format_reward_rec": 0.96875,
|
1688 |
+
"rewards/iou_reward": 0.7190883457660675,
|
1689 |
+
"step": 120
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"clip_ratio": 0.0,
|
1693 |
+
"completion_length": 75.0625,
|
1694 |
+
"epoch": 0.0015062490663745457,
|
1695 |
+
"grad_norm": 0.5305638313293457,
|
1696 |
+
"kl": 0.1748046875,
|
1697 |
+
"learning_rate": 9.992468754668128e-06,
|
1698 |
+
"loss": 0.007,
|
1699 |
+
"reward": 1.6585879921913147,
|
1700 |
+
"reward_std": 0.08734836708754301,
|
1701 |
+
"rewards/format_reward_rec": 1.0,
|
1702 |
+
"rewards/iou_reward": 0.6585879623889923,
|
1703 |
+
"step": 121
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"clip_ratio": 0.0,
|
1707 |
+
"completion_length": 81.84375,
|
1708 |
+
"epoch": 0.0015186974057660708,
|
1709 |
+
"grad_norm": 0.5158679485321045,
|
1710 |
+
"kl": 0.1240234375,
|
1711 |
+
"learning_rate": 9.99240651297117e-06,
|
1712 |
+
"loss": 0.0049,
|
1713 |
+
"reward": 1.8771040439605713,
|
1714 |
+
"reward_std": 0.07788556441664696,
|
1715 |
+
"rewards/format_reward_rec": 1.0,
|
1716 |
+
"rewards/iou_reward": 0.8771041035652161,
|
1717 |
+
"step": 122
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"clip_ratio": 0.0,
|
1721 |
+
"completion_length": 89.03125,
|
1722 |
+
"epoch": 0.001531145745157596,
|
1723 |
+
"grad_norm": 0.5314344167709351,
|
1724 |
+
"kl": 0.11328125,
|
1725 |
+
"learning_rate": 9.992344271274212e-06,
|
1726 |
+
"loss": 0.0045,
|
1727 |
+
"reward": 1.717368245124817,
|
1728 |
+
"reward_std": 0.12311140447854996,
|
1729 |
+
"rewards/format_reward_rec": 1.0,
|
1730 |
+
"rewards/iou_reward": 0.7173681855201721,
|
1731 |
+
"step": 123
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"clip_ratio": 0.0,
|
1735 |
+
"completion_length": 83.53125,
|
1736 |
+
"epoch": 0.001543594084549121,
|
1737 |
+
"grad_norm": 0.4630969762802124,
|
1738 |
+
"kl": 0.1318359375,
|
1739 |
+
"learning_rate": 9.992282029577255e-06,
|
1740 |
+
"loss": 0.0053,
|
1741 |
+
"reward": 1.5514342188835144,
|
1742 |
+
"reward_std": 0.2621281296014786,
|
1743 |
+
"rewards/format_reward_rec": 0.96875,
|
1744 |
+
"rewards/iou_reward": 0.5826842486858368,
|
1745 |
+
"step": 124
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"clip_ratio": 0.0,
|
1749 |
+
"completion_length": 82.25,
|
1750 |
+
"epoch": 0.0015560424239406464,
|
1751 |
+
"grad_norm": 0.5010308623313904,
|
1752 |
+
"kl": 0.11767578125,
|
1753 |
+
"learning_rate": 9.992219787880297e-06,
|
1754 |
+
"loss": 0.0047,
|
1755 |
+
"reward": 1.5915331840515137,
|
1756 |
+
"reward_std": 0.1749160811305046,
|
1757 |
+
"rewards/format_reward_rec": 1.0,
|
1758 |
+
"rewards/iou_reward": 0.5915331840515137,
|
1759 |
+
"step": 125
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"clip_ratio": 0.0,
|
1763 |
+
"completion_length": 73.125,
|
1764 |
+
"epoch": 0.0015684907633321714,
|
1765 |
+
"grad_norm": 0.4550737738609314,
|
1766 |
+
"kl": 0.139892578125,
|
1767 |
+
"learning_rate": 9.99215754618334e-06,
|
1768 |
+
"loss": 0.0056,
|
1769 |
+
"reward": 1.7983530759811401,
|
1770 |
+
"reward_std": 0.15214556828141212,
|
1771 |
+
"rewards/format_reward_rec": 1.0,
|
1772 |
+
"rewards/iou_reward": 0.7983531057834625,
|
1773 |
+
"step": 126
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"clip_ratio": 0.0,
|
1777 |
+
"completion_length": 80.53125,
|
1778 |
+
"epoch": 0.0015809391027236967,
|
1779 |
+
"grad_norm": 0.47265562415122986,
|
1780 |
+
"kl": 0.166015625,
|
1781 |
+
"learning_rate": 9.992095304486383e-06,
|
1782 |
+
"loss": 0.0066,
|
1783 |
+
"reward": 1.623586893081665,
|
1784 |
+
"reward_std": 0.0915629081428051,
|
1785 |
+
"rewards/format_reward_rec": 1.0,
|
1786 |
+
"rewards/iou_reward": 0.6235868632793427,
|
1787 |
+
"step": 127
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"clip_ratio": 0.0,
|
1791 |
+
"completion_length": 71.96875,
|
1792 |
+
"epoch": 0.0015933874421152217,
|
1793 |
+
"grad_norm": 0.5316770076751709,
|
1794 |
+
"kl": 0.12255859375,
|
1795 |
+
"learning_rate": 9.992033062789425e-06,
|
1796 |
+
"loss": 0.0049,
|
1797 |
+
"reward": 1.9262670278549194,
|
1798 |
+
"reward_std": 0.019816839136183262,
|
1799 |
+
"rewards/format_reward_rec": 1.0,
|
1800 |
+
"rewards/iou_reward": 0.926266998052597,
|
1801 |
+
"step": 128
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"clip_ratio": 0.0,
|
1805 |
+
"completion_length": 78.90625,
|
1806 |
+
"epoch": 0.001605835781506747,
|
1807 |
+
"grad_norm": 0.4828510582447052,
|
1808 |
+
"kl": 0.131103515625,
|
1809 |
+
"learning_rate": 9.991970821092466e-06,
|
1810 |
+
"loss": 0.0052,
|
1811 |
+
"reward": 1.5956175923347473,
|
1812 |
+
"reward_std": 0.11756857857108116,
|
1813 |
+
"rewards/format_reward_rec": 1.0,
|
1814 |
+
"rewards/iou_reward": 0.5956175774335861,
|
1815 |
+
"step": 129
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"clip_ratio": 0.0,
|
1819 |
+
"completion_length": 92.4375,
|
1820 |
+
"epoch": 0.001618284120898272,
|
1821 |
+
"grad_norm": 0.46744272112846375,
|
1822 |
+
"kl": 0.110107421875,
|
1823 |
+
"learning_rate": 9.99190857939551e-06,
|
1824 |
+
"loss": 0.0044,
|
1825 |
+
"reward": 1.9298859238624573,
|
1826 |
+
"reward_std": 0.036631692200899124,
|
1827 |
+
"rewards/format_reward_rec": 1.0,
|
1828 |
+
"rewards/iou_reward": 0.9298859238624573,
|
1829 |
+
"step": 130
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"clip_ratio": 0.0,
|
1833 |
+
"completion_length": 76.8125,
|
1834 |
+
"epoch": 0.0016307324602897974,
|
1835 |
+
"grad_norm": 0.5099858641624451,
|
1836 |
+
"kl": 0.150390625,
|
1837 |
+
"learning_rate": 9.991846337698552e-06,
|
1838 |
+
"loss": 0.006,
|
1839 |
+
"reward": 1.8364751935005188,
|
1840 |
+
"reward_std": 0.0698028914630413,
|
1841 |
+
"rewards/format_reward_rec": 1.0,
|
1842 |
+
"rewards/iou_reward": 0.8364751935005188,
|
1843 |
+
"step": 131
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"clip_ratio": 0.0,
|
1847 |
+
"completion_length": 83.0,
|
1848 |
+
"epoch": 0.0016431807996813224,
|
1849 |
+
"grad_norm": 0.5306047797203064,
|
1850 |
+
"kl": 0.151123046875,
|
1851 |
+
"learning_rate": 9.991784096001594e-06,
|
1852 |
+
"loss": 0.006,
|
1853 |
+
"reward": 1.7881332039833069,
|
1854 |
+
"reward_std": 0.25462284684181213,
|
1855 |
+
"rewards/format_reward_rec": 1.0,
|
1856 |
+
"rewards/iou_reward": 0.7881332635879517,
|
1857 |
+
"step": 132
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"clip_ratio": 0.0,
|
1861 |
+
"completion_length": 71.03125,
|
1862 |
+
"epoch": 0.0016556291390728477,
|
1863 |
+
"grad_norm": 0.5165503621101379,
|
1864 |
+
"kl": 0.1376953125,
|
1865 |
+
"learning_rate": 9.991721854304637e-06,
|
1866 |
+
"loss": 0.0055,
|
1867 |
+
"reward": 1.8669943809509277,
|
1868 |
+
"reward_std": 0.10201262310147285,
|
1869 |
+
"rewards/format_reward_rec": 1.0,
|
1870 |
+
"rewards/iou_reward": 0.8669944405555725,
|
1871 |
+
"step": 133
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"clip_ratio": 0.0,
|
1875 |
+
"completion_length": 80.46875,
|
1876 |
+
"epoch": 0.001668077478464373,
|
1877 |
+
"grad_norm": 0.5238383412361145,
|
1878 |
+
"kl": 0.125,
|
1879 |
+
"learning_rate": 9.99165961260768e-06,
|
1880 |
+
"loss": 0.005,
|
1881 |
+
"reward": 1.8666821718215942,
|
1882 |
+
"reward_std": 0.16252516955137253,
|
1883 |
+
"rewards/format_reward_rec": 0.96875,
|
1884 |
+
"rewards/iou_reward": 0.897932231426239,
|
1885 |
+
"step": 134
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"clip_ratio": 0.0,
|
1889 |
+
"completion_length": 86.96875,
|
1890 |
+
"epoch": 0.001680525817855898,
|
1891 |
+
"grad_norm": 3.0103187561035156,
|
1892 |
+
"kl": 0.369140625,
|
1893 |
+
"learning_rate": 9.991597370910721e-06,
|
1894 |
+
"loss": 0.0148,
|
1895 |
+
"reward": 1.6562628746032715,
|
1896 |
+
"reward_std": 0.061989203095436096,
|
1897 |
+
"rewards/format_reward_rec": 0.96875,
|
1898 |
+
"rewards/iou_reward": 0.6875128149986267,
|
1899 |
+
"step": 135
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"clip_ratio": 0.0,
|
1903 |
+
"completion_length": 77.96875,
|
1904 |
+
"epoch": 0.0016929741572474233,
|
1905 |
+
"grad_norm": 0.5688140988349915,
|
1906 |
+
"kl": 0.11865234375,
|
1907 |
+
"learning_rate": 9.991535129213765e-06,
|
1908 |
+
"loss": 0.0047,
|
1909 |
+
"reward": 1.6850191354751587,
|
1910 |
+
"reward_std": 0.1395672708749771,
|
1911 |
+
"rewards/format_reward_rec": 1.0,
|
1912 |
+
"rewards/iou_reward": 0.6850191354751587,
|
1913 |
+
"step": 136
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"clip_ratio": 0.0,
|
1917 |
+
"completion_length": 76.40625,
|
1918 |
+
"epoch": 0.0017054224966389483,
|
1919 |
+
"grad_norm": 0.5144866704940796,
|
1920 |
+
"kl": 0.1123046875,
|
1921 |
+
"learning_rate": 9.991472887516807e-06,
|
1922 |
+
"loss": 0.0045,
|
1923 |
+
"reward": 1.8065414428710938,
|
1924 |
+
"reward_std": 0.11821011267602444,
|
1925 |
+
"rewards/format_reward_rec": 1.0,
|
1926 |
+
"rewards/iou_reward": 0.8065415024757385,
|
1927 |
+
"step": 137
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"clip_ratio": 0.0,
|
1931 |
+
"completion_length": 78.59375,
|
1932 |
+
"epoch": 0.0017178708360304736,
|
1933 |
+
"grad_norm": 0.5437494516372681,
|
1934 |
+
"kl": 0.12744140625,
|
1935 |
+
"learning_rate": 9.991410645819848e-06,
|
1936 |
+
"loss": 0.0051,
|
1937 |
+
"reward": 1.751151978969574,
|
1938 |
+
"reward_std": 0.278888332657516,
|
1939 |
+
"rewards/format_reward_rec": 0.9375,
|
1940 |
+
"rewards/iou_reward": 0.813651978969574,
|
1941 |
+
"step": 138
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"clip_ratio": 0.0,
|
1945 |
+
"completion_length": 77.8125,
|
1946 |
+
"epoch": 0.0017303191754219987,
|
1947 |
+
"grad_norm": 0.5118846297264099,
|
1948 |
+
"kl": 0.13037109375,
|
1949 |
+
"learning_rate": 9.99134840412289e-06,
|
1950 |
+
"loss": 0.0052,
|
1951 |
+
"reward": 1.6839856505393982,
|
1952 |
+
"reward_std": 0.10992167890071869,
|
1953 |
+
"rewards/format_reward_rec": 0.96875,
|
1954 |
+
"rewards/iou_reward": 0.715235635638237,
|
1955 |
+
"step": 139
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"clip_ratio": 0.0,
|
1959 |
+
"completion_length": 92.78125,
|
1960 |
+
"epoch": 0.001742767514813524,
|
1961 |
+
"grad_norm": 0.6501355171203613,
|
1962 |
+
"kl": 0.1220703125,
|
1963 |
+
"learning_rate": 9.991286162425932e-06,
|
1964 |
+
"loss": 0.0049,
|
1965 |
+
"reward": 1.5675995349884033,
|
1966 |
+
"reward_std": 0.43148788809776306,
|
1967 |
+
"rewards/format_reward_rec": 0.9375,
|
1968 |
+
"rewards/iou_reward": 0.6300995051860809,
|
1969 |
+
"step": 140
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"clip_ratio": 0.0,
|
1973 |
+
"completion_length": 84.28125,
|
1974 |
+
"epoch": 0.001755215854205049,
|
1975 |
+
"grad_norm": 0.5102176666259766,
|
1976 |
+
"kl": 0.12353515625,
|
1977 |
+
"learning_rate": 9.991223920728976e-06,
|
1978 |
+
"loss": 0.0049,
|
1979 |
+
"reward": 1.8060396313667297,
|
1980 |
+
"reward_std": 0.142087172716856,
|
1981 |
+
"rewards/format_reward_rec": 1.0,
|
1982 |
+
"rewards/iou_reward": 0.8060396909713745,
|
1983 |
+
"step": 141
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"clip_ratio": 0.0,
|
1987 |
+
"completion_length": 87.34375,
|
1988 |
+
"epoch": 0.0017676641935965743,
|
1989 |
+
"grad_norm": 0.561132550239563,
|
1990 |
+
"kl": 0.138916015625,
|
1991 |
+
"learning_rate": 9.991161679032018e-06,
|
1992 |
+
"loss": 0.0055,
|
1993 |
+
"reward": 1.6661274433135986,
|
1994 |
+
"reward_std": 0.3482854291796684,
|
1995 |
+
"rewards/format_reward_rec": 0.96875,
|
1996 |
+
"rewards/iou_reward": 0.6973774135112762,
|
1997 |
+
"step": 142
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"clip_ratio": 0.0,
|
2001 |
+
"completion_length": 82.90625,
|
2002 |
+
"epoch": 0.0017801125329880993,
|
2003 |
+
"grad_norm": 0.555660605430603,
|
2004 |
+
"kl": 0.12939453125,
|
2005 |
+
"learning_rate": 9.99109943733506e-06,
|
2006 |
+
"loss": 0.0052,
|
2007 |
+
"reward": 1.7078312635421753,
|
2008 |
+
"reward_std": 0.2983357608318329,
|
2009 |
+
"rewards/format_reward_rec": 0.96875,
|
2010 |
+
"rewards/iou_reward": 0.7390812933444977,
|
2011 |
+
"step": 143
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"clip_ratio": 0.0,
|
2015 |
+
"completion_length": 86.15625,
|
2016 |
+
"epoch": 0.0017925608723796246,
|
2017 |
+
"grad_norm": 0.5917304754257202,
|
2018 |
+
"kl": 0.115966796875,
|
2019 |
+
"learning_rate": 9.991037195638103e-06,
|
2020 |
+
"loss": 0.0046,
|
2021 |
+
"reward": 1.6995146870613098,
|
2022 |
+
"reward_std": 0.176687341183424,
|
2023 |
+
"rewards/format_reward_rec": 1.0,
|
2024 |
+
"rewards/iou_reward": 0.6995146870613098,
|
2025 |
+
"step": 144
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"clip_ratio": 0.0,
|
2029 |
+
"completion_length": 76.5625,
|
2030 |
+
"epoch": 0.0018050092117711497,
|
2031 |
+
"grad_norm": 0.49189749360084534,
|
2032 |
+
"kl": 0.122314453125,
|
2033 |
+
"learning_rate": 9.990974953941145e-06,
|
2034 |
+
"loss": 0.0049,
|
2035 |
+
"reward": 1.8386791944503784,
|
2036 |
+
"reward_std": 0.11668524146080017,
|
2037 |
+
"rewards/format_reward_rec": 1.0,
|
2038 |
+
"rewards/iou_reward": 0.8386792242527008,
|
2039 |
+
"step": 145
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"clip_ratio": 0.0,
|
2043 |
+
"completion_length": 72.03125,
|
2044 |
+
"epoch": 0.001817457551162675,
|
2045 |
+
"grad_norm": 0.5640706419944763,
|
2046 |
+
"kl": 0.101318359375,
|
2047 |
+
"learning_rate": 9.990912712244187e-06,
|
2048 |
+
"loss": 0.0041,
|
2049 |
+
"reward": 1.6799483895301819,
|
2050 |
+
"reward_std": 0.19784042239189148,
|
2051 |
+
"rewards/format_reward_rec": 0.96875,
|
2052 |
+
"rewards/iou_reward": 0.7111983299255371,
|
2053 |
+
"step": 146
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"clip_ratio": 0.0,
|
2057 |
+
"completion_length": 82.75,
|
2058 |
+
"epoch": 0.0018299058905542,
|
2059 |
+
"grad_norm": 0.6259125471115112,
|
2060 |
+
"kl": 0.131103515625,
|
2061 |
+
"learning_rate": 9.99085047054723e-06,
|
2062 |
+
"loss": 0.0052,
|
2063 |
+
"reward": 1.6741862893104553,
|
2064 |
+
"reward_std": 0.05047000013291836,
|
2065 |
+
"rewards/format_reward_rec": 1.0,
|
2066 |
+
"rewards/iou_reward": 0.6741862595081329,
|
2067 |
+
"step": 147
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"clip_ratio": 0.0,
|
2071 |
+
"completion_length": 81.375,
|
2072 |
+
"epoch": 0.0018423542299457253,
|
2073 |
+
"grad_norm": 0.6438843011856079,
|
2074 |
+
"kl": 0.16552734375,
|
2075 |
+
"learning_rate": 9.990788228850272e-06,
|
2076 |
+
"loss": 0.0066,
|
2077 |
+
"reward": 1.6975774765014648,
|
2078 |
+
"reward_std": 0.3462005481123924,
|
2079 |
+
"rewards/format_reward_rec": 0.96875,
|
2080 |
+
"rewards/iou_reward": 0.7288274765014648,
|
2081 |
+
"step": 148
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"clip_ratio": 0.0,
|
2085 |
+
"completion_length": 82.5,
|
2086 |
+
"epoch": 0.0018548025693372503,
|
2087 |
+
"grad_norm": 0.5777101516723633,
|
2088 |
+
"kl": 0.12451171875,
|
2089 |
+
"learning_rate": 9.990725987153314e-06,
|
2090 |
+
"loss": 0.005,
|
2091 |
+
"reward": 1.7958465814590454,
|
2092 |
+
"reward_std": 0.29284024983644485,
|
2093 |
+
"rewards/format_reward_rec": 0.9375,
|
2094 |
+
"rewards/iou_reward": 0.8583464920520782,
|
2095 |
+
"step": 149
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"clip_ratio": 0.0,
|
2099 |
+
"completion_length": 77.9375,
|
2100 |
+
"epoch": 0.0018672509087287756,
|
2101 |
+
"grad_norm": 0.5476696491241455,
|
2102 |
+
"kl": 0.128662109375,
|
2103 |
+
"learning_rate": 9.990663745456358e-06,
|
2104 |
+
"loss": 0.0051,
|
2105 |
+
"reward": 1.7851470112800598,
|
2106 |
+
"reward_std": 0.15798081643879414,
|
2107 |
+
"rewards/format_reward_rec": 0.96875,
|
2108 |
+
"rewards/iou_reward": 0.8163970410823822,
|
2109 |
+
"step": 150
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"clip_ratio": 0.0,
|
2113 |
+
"completion_length": 80.25,
|
2114 |
+
"epoch": 0.0018796992481203006,
|
2115 |
+
"grad_norm": 0.48750340938568115,
|
2116 |
+
"kl": 0.122802734375,
|
2117 |
+
"learning_rate": 9.9906015037594e-06,
|
2118 |
+
"loss": 0.0049,
|
2119 |
+
"reward": 1.724117934703827,
|
2120 |
+
"reward_std": 0.17644132114946842,
|
2121 |
+
"rewards/format_reward_rec": 1.0,
|
2122 |
+
"rewards/iou_reward": 0.7241179645061493,
|
2123 |
+
"step": 151
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"clip_ratio": 0.0,
|
2127 |
+
"completion_length": 87.5,
|
2128 |
+
"epoch": 0.001892147587511826,
|
2129 |
+
"grad_norm": 0.6843100786209106,
|
2130 |
+
"kl": 0.1123046875,
|
2131 |
+
"learning_rate": 9.990539262062441e-06,
|
2132 |
+
"loss": 0.0045,
|
2133 |
+
"reward": 1.801917552947998,
|
2134 |
+
"reward_std": 0.1792924776673317,
|
2135 |
+
"rewards/format_reward_rec": 0.96875,
|
2136 |
+
"rewards/iou_reward": 0.8331675827503204,
|
2137 |
+
"step": 152
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"clip_ratio": 0.0,
|
2141 |
+
"completion_length": 89.0625,
|
2142 |
+
"epoch": 0.0019045959269033512,
|
2143 |
+
"grad_norm": 0.5321158766746521,
|
2144 |
+
"kl": 0.11376953125,
|
2145 |
+
"learning_rate": 9.990477020365485e-06,
|
2146 |
+
"loss": 0.0045,
|
2147 |
+
"reward": 1.631728708744049,
|
2148 |
+
"reward_std": 0.2040170580148697,
|
2149 |
+
"rewards/format_reward_rec": 0.96875,
|
2150 |
+
"rewards/iou_reward": 0.6629787236452103,
|
2151 |
+
"step": 153
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"clip_ratio": 0.0,
|
2155 |
+
"completion_length": 90.53125,
|
2156 |
+
"epoch": 0.0019170442662948763,
|
2157 |
+
"grad_norm": 0.5559011697769165,
|
2158 |
+
"kl": 0.100341796875,
|
2159 |
+
"learning_rate": 9.990414778668527e-06,
|
2160 |
+
"loss": 0.004,
|
2161 |
+
"reward": 1.7384355068206787,
|
2162 |
+
"reward_std": 0.3657010346651077,
|
2163 |
+
"rewards/format_reward_rec": 0.9375,
|
2164 |
+
"rewards/iou_reward": 0.8009354472160339,
|
2165 |
+
"step": 154
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"clip_ratio": 0.0,
|
2169 |
+
"completion_length": 80.8125,
|
2170 |
+
"epoch": 0.0019294926056864015,
|
2171 |
+
"grad_norm": 0.5985516905784607,
|
2172 |
+
"kl": 0.109619140625,
|
2173 |
+
"learning_rate": 9.990352536971569e-06,
|
2174 |
+
"loss": 0.0044,
|
2175 |
+
"reward": 1.7658506035804749,
|
2176 |
+
"reward_std": 0.1951538361608982,
|
2177 |
+
"rewards/format_reward_rec": 0.96875,
|
2178 |
+
"rewards/iou_reward": 0.7971006333827972,
|
2179 |
+
"step": 155
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"clip_ratio": 0.0,
|
2183 |
+
"completion_length": 91.375,
|
2184 |
+
"epoch": 0.0019419409450779266,
|
2185 |
+
"grad_norm": 0.5207005739212036,
|
2186 |
+
"kl": 0.124267578125,
|
2187 |
+
"learning_rate": 9.990290295274612e-06,
|
2188 |
+
"loss": 0.005,
|
2189 |
+
"reward": 1.6580237746238708,
|
2190 |
+
"reward_std": 0.20409102737903595,
|
2191 |
+
"rewards/format_reward_rec": 0.96875,
|
2192 |
+
"rewards/iou_reward": 0.6892738342285156,
|
2193 |
+
"step": 156
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"clip_ratio": 0.0,
|
2197 |
+
"completion_length": 86.40625,
|
2198 |
+
"epoch": 0.001954389284469452,
|
2199 |
+
"grad_norm": 0.614124059677124,
|
2200 |
+
"kl": 0.11474609375,
|
2201 |
+
"learning_rate": 9.990228053577652e-06,
|
2202 |
+
"loss": 0.0046,
|
2203 |
+
"reward": 1.6734708547592163,
|
2204 |
+
"reward_std": 0.24323870986700058,
|
2205 |
+
"rewards/format_reward_rec": 1.0,
|
2206 |
+
"rewards/iou_reward": 0.6734707951545715,
|
2207 |
+
"step": 157
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"clip_ratio": 0.0,
|
2211 |
+
"completion_length": 99.1875,
|
2212 |
+
"epoch": 0.001966837623860977,
|
2213 |
+
"grad_norm": 0.5424925684928894,
|
2214 |
+
"kl": 0.098388671875,
|
2215 |
+
"learning_rate": 9.990165811880696e-06,
|
2216 |
+
"loss": 0.0039,
|
2217 |
+
"reward": 1.6296205520629883,
|
2218 |
+
"reward_std": 0.20492691174149513,
|
2219 |
+
"rewards/format_reward_rec": 0.96875,
|
2220 |
+
"rewards/iou_reward": 0.6608706414699554,
|
2221 |
+
"step": 158
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"clip_ratio": 0.0,
|
2225 |
+
"completion_length": 84.25,
|
2226 |
+
"epoch": 0.001979285963252502,
|
2227 |
+
"grad_norm": 0.5724992156028748,
|
2228 |
+
"kl": 0.1376953125,
|
2229 |
+
"learning_rate": 9.990103570183738e-06,
|
2230 |
+
"loss": 0.0055,
|
2231 |
+
"reward": 1.5222105383872986,
|
2232 |
+
"reward_std": 0.28245383501052856,
|
2233 |
+
"rewards/format_reward_rec": 0.96875,
|
2234 |
+
"rewards/iou_reward": 0.5534605383872986,
|
2235 |
+
"step": 159
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"clip_ratio": 0.0,
|
2239 |
+
"completion_length": 76.09375,
|
2240 |
+
"epoch": 0.0019917343026440272,
|
2241 |
+
"grad_norm": 0.5227129459381104,
|
2242 |
+
"kl": 0.146484375,
|
2243 |
+
"learning_rate": 9.99004132848678e-06,
|
2244 |
+
"loss": 0.0059,
|
2245 |
+
"reward": 1.8685023188591003,
|
2246 |
+
"reward_std": 0.0524298120290041,
|
2247 |
+
"rewards/format_reward_rec": 1.0,
|
2248 |
+
"rewards/iou_reward": 0.8685023784637451,
|
2249 |
+
"step": 160
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"clip_ratio": 0.0,
|
2253 |
+
"completion_length": 73.875,
|
2254 |
+
"epoch": 0.0020041826420355525,
|
2255 |
+
"grad_norm": 0.6109131574630737,
|
2256 |
+
"kl": 0.1123046875,
|
2257 |
+
"learning_rate": 9.989979086789823e-06,
|
2258 |
+
"loss": 0.0045,
|
2259 |
+
"reward": 1.871379554271698,
|
2260 |
+
"reward_std": 0.09691573679447174,
|
2261 |
+
"rewards/format_reward_rec": 1.0,
|
2262 |
+
"rewards/iou_reward": 0.8713796138763428,
|
2263 |
+
"step": 161
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"clip_ratio": 0.0,
|
2267 |
+
"completion_length": 75.34375,
|
2268 |
+
"epoch": 0.002016630981427078,
|
2269 |
+
"grad_norm": 0.5628411769866943,
|
2270 |
+
"kl": 0.139892578125,
|
2271 |
+
"learning_rate": 9.989916845092865e-06,
|
2272 |
+
"loss": 0.0056,
|
2273 |
+
"reward": 1.856031894683838,
|
2274 |
+
"reward_std": 0.05577436415478587,
|
2275 |
+
"rewards/format_reward_rec": 1.0,
|
2276 |
+
"rewards/iou_reward": 0.8560318946838379,
|
2277 |
+
"step": 162
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"clip_ratio": 0.0,
|
2281 |
+
"completion_length": 83.625,
|
2282 |
+
"epoch": 0.0020290793208186026,
|
2283 |
+
"grad_norm": 0.5170895457267761,
|
2284 |
+
"kl": 0.1171875,
|
2285 |
+
"learning_rate": 9.989854603395907e-06,
|
2286 |
+
"loss": 0.0047,
|
2287 |
+
"reward": 1.7793619632720947,
|
2288 |
+
"reward_std": 0.1213589683175087,
|
2289 |
+
"rewards/format_reward_rec": 1.0,
|
2290 |
+
"rewards/iou_reward": 0.7793619930744171,
|
2291 |
+
"step": 163
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"clip_ratio": 0.0,
|
2295 |
+
"completion_length": 90.5625,
|
2296 |
+
"epoch": 0.002041527660210128,
|
2297 |
+
"grad_norm": 0.49487820267677307,
|
2298 |
+
"kl": 0.111328125,
|
2299 |
+
"learning_rate": 9.98979236169895e-06,
|
2300 |
+
"loss": 0.0045,
|
2301 |
+
"reward": 1.5895143151283264,
|
2302 |
+
"reward_std": 0.15016086027026176,
|
2303 |
+
"rewards/format_reward_rec": 1.0,
|
2304 |
+
"rewards/iou_reward": 0.5895143449306488,
|
2305 |
+
"step": 164
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"clip_ratio": 0.0,
|
2309 |
+
"completion_length": 78.875,
|
2310 |
+
"epoch": 0.002053975999601653,
|
2311 |
+
"grad_norm": 0.6349457502365112,
|
2312 |
+
"kl": 0.1298828125,
|
2313 |
+
"learning_rate": 9.989730120001992e-06,
|
2314 |
+
"loss": 0.0052,
|
2315 |
+
"reward": 1.5769969820976257,
|
2316 |
+
"reward_std": 0.23748912662267685,
|
2317 |
+
"rewards/format_reward_rec": 1.0,
|
2318 |
+
"rewards/iou_reward": 0.5769969820976257,
|
2319 |
+
"step": 165
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"clip_ratio": 0.0,
|
2323 |
+
"completion_length": 92.125,
|
2324 |
+
"epoch": 0.0020664243389931784,
|
2325 |
+
"grad_norm": 0.7995075583457947,
|
2326 |
+
"kl": 0.17919921875,
|
2327 |
+
"learning_rate": 9.989667878305034e-06,
|
2328 |
+
"loss": 0.0072,
|
2329 |
+
"reward": 1.7468191981315613,
|
2330 |
+
"reward_std": 0.37003619968891144,
|
2331 |
+
"rewards/format_reward_rec": 0.96875,
|
2332 |
+
"rewards/iou_reward": 0.7780691385269165,
|
2333 |
+
"step": 166
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"clip_ratio": 0.0,
|
2337 |
+
"completion_length": 80.09375,
|
2338 |
+
"epoch": 0.0020788726783847033,
|
2339 |
+
"grad_norm": 0.5599526762962341,
|
2340 |
+
"kl": 0.1416015625,
|
2341 |
+
"learning_rate": 9.989605636608078e-06,
|
2342 |
+
"loss": 0.0057,
|
2343 |
+
"reward": 1.8237193822860718,
|
2344 |
+
"reward_std": 0.10361789353191853,
|
2345 |
+
"rewards/format_reward_rec": 1.0,
|
2346 |
+
"rewards/iou_reward": 0.8237193524837494,
|
2347 |
+
"step": 167
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"clip_ratio": 0.0,
|
2351 |
+
"completion_length": 74.15625,
|
2352 |
+
"epoch": 0.0020913210177762286,
|
2353 |
+
"grad_norm": 0.5949897170066833,
|
2354 |
+
"kl": 0.1611328125,
|
2355 |
+
"learning_rate": 9.98954339491112e-06,
|
2356 |
+
"loss": 0.0065,
|
2357 |
+
"reward": 1.7989261150360107,
|
2358 |
+
"reward_std": 0.13571097142994404,
|
2359 |
+
"rewards/format_reward_rec": 1.0,
|
2360 |
+
"rewards/iou_reward": 0.7989261448383331,
|
2361 |
+
"step": 168
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"clip_ratio": 0.0,
|
2365 |
+
"completion_length": 78.625,
|
2366 |
+
"epoch": 0.002103769357167754,
|
2367 |
+
"grad_norm": 0.5042181611061096,
|
2368 |
+
"kl": 0.10107421875,
|
2369 |
+
"learning_rate": 9.989481153214162e-06,
|
2370 |
+
"loss": 0.004,
|
2371 |
+
"reward": 1.9031283855438232,
|
2372 |
+
"reward_std": 0.029928937554359436,
|
2373 |
+
"rewards/format_reward_rec": 1.0,
|
2374 |
+
"rewards/iou_reward": 0.9031283855438232,
|
2375 |
+
"step": 169
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"clip_ratio": 0.0,
|
2379 |
+
"completion_length": 80.96875,
|
2380 |
+
"epoch": 0.002116217696559279,
|
2381 |
+
"grad_norm": 0.49940019845962524,
|
2382 |
+
"kl": 0.1201171875,
|
2383 |
+
"learning_rate": 9.989418911517205e-06,
|
2384 |
+
"loss": 0.0048,
|
2385 |
+
"reward": 1.9246177077293396,
|
2386 |
+
"reward_std": 0.02288174256682396,
|
2387 |
+
"rewards/format_reward_rec": 1.0,
|
2388 |
+
"rewards/iou_reward": 0.924617737531662,
|
2389 |
+
"step": 170
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"clip_ratio": 0.0,
|
2393 |
+
"completion_length": 78.8125,
|
2394 |
+
"epoch": 0.0021286660359508044,
|
2395 |
+
"grad_norm": 0.6179351806640625,
|
2396 |
+
"kl": 0.1689453125,
|
2397 |
+
"learning_rate": 9.989356669820247e-06,
|
2398 |
+
"loss": 0.0068,
|
2399 |
+
"reward": 1.7295928597450256,
|
2400 |
+
"reward_std": 0.11133578047156334,
|
2401 |
+
"rewards/format_reward_rec": 1.0,
|
2402 |
+
"rewards/iou_reward": 0.7295928299427032,
|
2403 |
+
"step": 171
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"clip_ratio": 0.0,
|
2407 |
+
"completion_length": 78.625,
|
2408 |
+
"epoch": 0.0021411143753423292,
|
2409 |
+
"grad_norm": 0.5767012238502502,
|
2410 |
+
"kl": 0.13427734375,
|
2411 |
+
"learning_rate": 9.989294428123289e-06,
|
2412 |
+
"loss": 0.0054,
|
2413 |
+
"reward": 1.733388900756836,
|
2414 |
+
"reward_std": 0.09509897604584694,
|
2415 |
+
"rewards/format_reward_rec": 1.0,
|
2416 |
+
"rewards/iou_reward": 0.7333889603614807,
|
2417 |
+
"step": 172
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"clip_ratio": 0.0,
|
2421 |
+
"completion_length": 84.5625,
|
2422 |
+
"epoch": 0.0021535627147338545,
|
2423 |
+
"grad_norm": 0.6296212077140808,
|
2424 |
+
"kl": 0.110107421875,
|
2425 |
+
"learning_rate": 9.989232186426333e-06,
|
2426 |
+
"loss": 0.0044,
|
2427 |
+
"reward": 1.734093189239502,
|
2428 |
+
"reward_std": 0.1716211587190628,
|
2429 |
+
"rewards/format_reward_rec": 1.0,
|
2430 |
+
"rewards/iou_reward": 0.7340930998325348,
|
2431 |
+
"step": 173
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"clip_ratio": 0.0,
|
2435 |
+
"completion_length": 78.875,
|
2436 |
+
"epoch": 0.0021660110541253798,
|
2437 |
+
"grad_norm": 0.6160764098167419,
|
2438 |
+
"kl": 0.134765625,
|
2439 |
+
"learning_rate": 9.989169944729374e-06,
|
2440 |
+
"loss": 0.0054,
|
2441 |
+
"reward": 1.6963000297546387,
|
2442 |
+
"reward_std": 0.155071921646595,
|
2443 |
+
"rewards/format_reward_rec": 0.96875,
|
2444 |
+
"rewards/iou_reward": 0.7275499999523163,
|
2445 |
+
"step": 174
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"clip_ratio": 0.0,
|
2449 |
+
"completion_length": 75.625,
|
2450 |
+
"epoch": 0.002178459393516905,
|
2451 |
+
"grad_norm": 0.7459288239479065,
|
2452 |
+
"kl": 0.16015625,
|
2453 |
+
"learning_rate": 9.989107703032416e-06,
|
2454 |
+
"loss": 0.0064,
|
2455 |
+
"reward": 1.748288869857788,
|
2456 |
+
"reward_std": 0.06110543105751276,
|
2457 |
+
"rewards/format_reward_rec": 1.0,
|
2458 |
+
"rewards/iou_reward": 0.7482888698577881,
|
2459 |
+
"step": 175
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"clip_ratio": 0.0,
|
2463 |
+
"completion_length": 85.4375,
|
2464 |
+
"epoch": 0.00219090773290843,
|
2465 |
+
"grad_norm": 0.5298272371292114,
|
2466 |
+
"kl": 0.11181640625,
|
2467 |
+
"learning_rate": 9.989045461335458e-06,
|
2468 |
+
"loss": 0.0045,
|
2469 |
+
"reward": 1.9230260848999023,
|
2470 |
+
"reward_std": 0.017507225275039673,
|
2471 |
+
"rewards/format_reward_rec": 1.0,
|
2472 |
+
"rewards/iou_reward": 0.92302605509758,
|
2473 |
+
"step": 176
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"clip_ratio": 0.0,
|
2477 |
+
"completion_length": 89.75,
|
2478 |
+
"epoch": 0.002203356072299955,
|
2479 |
+
"grad_norm": 0.5735234022140503,
|
2480 |
+
"kl": 0.12841796875,
|
2481 |
+
"learning_rate": 9.9889832196385e-06,
|
2482 |
+
"loss": 0.0051,
|
2483 |
+
"reward": 1.8215650916099548,
|
2484 |
+
"reward_std": 0.08769259601831436,
|
2485 |
+
"rewards/format_reward_rec": 1.0,
|
2486 |
+
"rewards/iou_reward": 0.8215650618076324,
|
2487 |
+
"step": 177
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"clip_ratio": 0.0,
|
2491 |
+
"completion_length": 97.625,
|
2492 |
+
"epoch": 0.0022158044116914804,
|
2493 |
+
"grad_norm": 0.7775987982749939,
|
2494 |
+
"kl": 0.11865234375,
|
2495 |
+
"learning_rate": 9.988920977941544e-06,
|
2496 |
+
"loss": 0.0047,
|
2497 |
+
"reward": 1.8203516602516174,
|
2498 |
+
"reward_std": 0.22550363093614578,
|
2499 |
+
"rewards/format_reward_rec": 0.96875,
|
2500 |
+
"rewards/iou_reward": 0.851601630449295,
|
2501 |
+
"step": 178
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"clip_ratio": 0.0,
|
2505 |
+
"completion_length": 84.375,
|
2506 |
+
"epoch": 0.0022282527510830057,
|
2507 |
+
"grad_norm": 0.5245223045349121,
|
2508 |
+
"kl": 0.12744140625,
|
2509 |
+
"learning_rate": 9.988858736244585e-06,
|
2510 |
+
"loss": 0.0051,
|
2511 |
+
"reward": 1.8911280632019043,
|
2512 |
+
"reward_std": 0.02437590528279543,
|
2513 |
+
"rewards/format_reward_rec": 1.0,
|
2514 |
+
"rewards/iou_reward": 0.8911280632019043,
|
2515 |
+
"step": 179
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"clip_ratio": 0.0,
|
2519 |
+
"completion_length": 83.4375,
|
2520 |
+
"epoch": 0.0022407010904745305,
|
2521 |
+
"grad_norm": 0.518882155418396,
|
2522 |
+
"kl": 0.1708984375,
|
2523 |
+
"learning_rate": 9.988796494547627e-06,
|
2524 |
+
"loss": 0.0069,
|
2525 |
+
"reward": 1.7126802206039429,
|
2526 |
+
"reward_std": 0.05515829473733902,
|
2527 |
+
"rewards/format_reward_rec": 1.0,
|
2528 |
+
"rewards/iou_reward": 0.7126802206039429,
|
2529 |
+
"step": 180
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"clip_ratio": 0.0,
|
2533 |
+
"completion_length": 87.21875,
|
2534 |
+
"epoch": 0.002253149429866056,
|
2535 |
+
"grad_norm": 0.5248196125030518,
|
2536 |
+
"kl": 0.133544921875,
|
2537 |
+
"learning_rate": 9.988734252850671e-06,
|
2538 |
+
"loss": 0.0053,
|
2539 |
+
"reward": 1.7711573839187622,
|
2540 |
+
"reward_std": 0.11591519042849541,
|
2541 |
+
"rewards/format_reward_rec": 0.96875,
|
2542 |
+
"rewards/iou_reward": 0.8024073839187622,
|
2543 |
+
"step": 181
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"clip_ratio": 0.0,
|
2547 |
+
"completion_length": 83.78125,
|
2548 |
+
"epoch": 0.002265597769257581,
|
2549 |
+
"grad_norm": 0.5835661292076111,
|
2550 |
+
"kl": 0.11669921875,
|
2551 |
+
"learning_rate": 9.988672011153713e-06,
|
2552 |
+
"loss": 0.0047,
|
2553 |
+
"reward": 1.8540168404579163,
|
2554 |
+
"reward_std": 0.07147128880023956,
|
2555 |
+
"rewards/format_reward_rec": 1.0,
|
2556 |
+
"rewards/iou_reward": 0.8540168106555939,
|
2557 |
+
"step": 182
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"clip_ratio": 0.0,
|
2561 |
+
"completion_length": 81.75,
|
2562 |
+
"epoch": 0.0022780461086491064,
|
2563 |
+
"grad_norm": 0.6301136016845703,
|
2564 |
+
"kl": 0.17919921875,
|
2565 |
+
"learning_rate": 9.988609769456755e-06,
|
2566 |
+
"loss": 0.0072,
|
2567 |
+
"reward": 1.529570460319519,
|
2568 |
+
"reward_std": 0.40445713698863983,
|
2569 |
+
"rewards/format_reward_rec": 0.96875,
|
2570 |
+
"rewards/iou_reward": 0.560820534825325,
|
2571 |
+
"step": 183
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"clip_ratio": 0.0,
|
2575 |
+
"completion_length": 83.5,
|
2576 |
+
"epoch": 0.002290494448040631,
|
2577 |
+
"grad_norm": 0.6207419037818909,
|
2578 |
+
"kl": 0.14453125,
|
2579 |
+
"learning_rate": 9.988547527759798e-06,
|
2580 |
+
"loss": 0.0058,
|
2581 |
+
"reward": 1.7111443877220154,
|
2582 |
+
"reward_std": 0.23457887768745422,
|
2583 |
+
"rewards/format_reward_rec": 1.0,
|
2584 |
+
"rewards/iou_reward": 0.7111444473266602,
|
2585 |
+
"step": 184
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"clip_ratio": 0.0,
|
2589 |
+
"completion_length": 86.1875,
|
2590 |
+
"epoch": 0.0023029427874321565,
|
2591 |
+
"grad_norm": 0.5986655950546265,
|
2592 |
+
"kl": 0.14892578125,
|
2593 |
+
"learning_rate": 9.98848528606284e-06,
|
2594 |
+
"loss": 0.006,
|
2595 |
+
"reward": 1.9187002182006836,
|
2596 |
+
"reward_std": 0.06093704979866743,
|
2597 |
+
"rewards/format_reward_rec": 1.0,
|
2598 |
+
"rewards/iou_reward": 0.9187001585960388,
|
2599 |
+
"step": 185
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"clip_ratio": 0.0,
|
2603 |
+
"completion_length": 87.375,
|
2604 |
+
"epoch": 0.0023153911268236817,
|
2605 |
+
"grad_norm": 0.6483145952224731,
|
2606 |
+
"kl": 0.139892578125,
|
2607 |
+
"learning_rate": 9.988423044365882e-06,
|
2608 |
+
"loss": 0.0056,
|
2609 |
+
"reward": 1.8686339855194092,
|
2610 |
+
"reward_std": 0.0916680209338665,
|
2611 |
+
"rewards/format_reward_rec": 1.0,
|
2612 |
+
"rewards/iou_reward": 0.8686340153217316,
|
2613 |
+
"step": 186
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"clip_ratio": 0.0,
|
2617 |
+
"completion_length": 82.71875,
|
2618 |
+
"epoch": 0.002327839466215207,
|
2619 |
+
"grad_norm": 0.6316834688186646,
|
2620 |
+
"kl": 0.142578125,
|
2621 |
+
"learning_rate": 9.988360802668925e-06,
|
2622 |
+
"loss": 0.0057,
|
2623 |
+
"reward": 1.5443827509880066,
|
2624 |
+
"reward_std": 0.23182823695242405,
|
2625 |
+
"rewards/format_reward_rec": 1.0,
|
2626 |
+
"rewards/iou_reward": 0.5443826913833618,
|
2627 |
+
"step": 187
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"clip_ratio": 0.0,
|
2631 |
+
"completion_length": 87.9375,
|
2632 |
+
"epoch": 0.002340287805606732,
|
2633 |
+
"grad_norm": 0.5704943537712097,
|
2634 |
+
"kl": 0.1201171875,
|
2635 |
+
"learning_rate": 9.988298560971967e-06,
|
2636 |
+
"loss": 0.0048,
|
2637 |
+
"reward": 1.7290632724761963,
|
2638 |
+
"reward_std": 0.10309558361768723,
|
2639 |
+
"rewards/format_reward_rec": 1.0,
|
2640 |
+
"rewards/iou_reward": 0.7290633618831635,
|
2641 |
+
"step": 188
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"clip_ratio": 0.0,
|
2645 |
+
"completion_length": 93.0,
|
2646 |
+
"epoch": 0.002352736144998257,
|
2647 |
+
"grad_norm": 0.5360406637191772,
|
2648 |
+
"kl": 0.12646484375,
|
2649 |
+
"learning_rate": 9.98823631927501e-06,
|
2650 |
+
"loss": 0.0051,
|
2651 |
+
"reward": 1.6119696497917175,
|
2652 |
+
"reward_std": 0.27103206515312195,
|
2653 |
+
"rewards/format_reward_rec": 0.96875,
|
2654 |
+
"rewards/iou_reward": 0.6432196497917175,
|
2655 |
+
"step": 189
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"clip_ratio": 0.0,
|
2659 |
+
"completion_length": 93.71875,
|
2660 |
+
"epoch": 0.0023651844843897824,
|
2661 |
+
"grad_norm": 0.5768948197364807,
|
2662 |
+
"kl": 0.1376953125,
|
2663 |
+
"learning_rate": 9.988174077578053e-06,
|
2664 |
+
"loss": 0.0055,
|
2665 |
+
"reward": 1.7519559860229492,
|
2666 |
+
"reward_std": 0.19511063676327467,
|
2667 |
+
"rewards/format_reward_rec": 0.96875,
|
2668 |
+
"rewards/iou_reward": 0.783206045627594,
|
2669 |
+
"step": 190
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"clip_ratio": 0.0,
|
2673 |
+
"completion_length": 87.46875,
|
2674 |
+
"epoch": 0.0023776328237813077,
|
2675 |
+
"grad_norm": 0.5476570129394531,
|
2676 |
+
"kl": 0.1240234375,
|
2677 |
+
"learning_rate": 9.988111835881095e-06,
|
2678 |
+
"loss": 0.005,
|
2679 |
+
"reward": 1.8128422498703003,
|
2680 |
+
"reward_std": 0.15785422176122665,
|
2681 |
+
"rewards/format_reward_rec": 1.0,
|
2682 |
+
"rewards/iou_reward": 0.8128422796726227,
|
2683 |
+
"step": 191
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"clip_ratio": 0.0,
|
2687 |
+
"completion_length": 84.8125,
|
2688 |
+
"epoch": 0.002390081163172833,
|
2689 |
+
"grad_norm": 0.6113950610160828,
|
2690 |
+
"kl": 0.10986328125,
|
2691 |
+
"learning_rate": 9.988049594184137e-06,
|
2692 |
+
"loss": 0.0044,
|
2693 |
+
"reward": 1.7782840132713318,
|
2694 |
+
"reward_std": 0.10723626054823399,
|
2695 |
+
"rewards/format_reward_rec": 1.0,
|
2696 |
+
"rewards/iou_reward": 0.7782839834690094,
|
2697 |
+
"step": 192
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"clip_ratio": 0.0,
|
2701 |
+
"completion_length": 103.40625,
|
2702 |
+
"epoch": 0.002402529502564358,
|
2703 |
+
"grad_norm": 0.5610492825508118,
|
2704 |
+
"kl": 0.129150390625,
|
2705 |
+
"learning_rate": 9.98798735248718e-06,
|
2706 |
+
"loss": 0.0052,
|
2707 |
+
"reward": 1.8901705145835876,
|
2708 |
+
"reward_std": 0.04007100500166416,
|
2709 |
+
"rewards/format_reward_rec": 1.0,
|
2710 |
+
"rewards/iou_reward": 0.89017054438591,
|
2711 |
+
"step": 193
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"clip_ratio": 0.0,
|
2715 |
+
"completion_length": 101.625,
|
2716 |
+
"epoch": 0.002414977841955883,
|
2717 |
+
"grad_norm": 0.7355772256851196,
|
2718 |
+
"kl": 0.113525390625,
|
2719 |
+
"learning_rate": 9.98792511079022e-06,
|
2720 |
+
"loss": 0.0046,
|
2721 |
+
"reward": 1.762471079826355,
|
2722 |
+
"reward_std": 0.02271357737481594,
|
2723 |
+
"rewards/format_reward_rec": 1.0,
|
2724 |
+
"rewards/iou_reward": 0.762471079826355,
|
2725 |
+
"step": 194
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"clip_ratio": 0.0,
|
2729 |
+
"completion_length": 90.8125,
|
2730 |
+
"epoch": 0.0024274261813474083,
|
2731 |
+
"grad_norm": 0.6883395314216614,
|
2732 |
+
"kl": 0.09521484375,
|
2733 |
+
"learning_rate": 9.987862869093264e-06,
|
2734 |
+
"loss": 0.0038,
|
2735 |
+
"reward": 1.8147326707839966,
|
2736 |
+
"reward_std": 0.20457583293318748,
|
2737 |
+
"rewards/format_reward_rec": 0.96875,
|
2738 |
+
"rewards/iou_reward": 0.8459826409816742,
|
2739 |
+
"step": 195
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"clip_ratio": 0.0,
|
2743 |
+
"completion_length": 92.875,
|
2744 |
+
"epoch": 0.0024398745207389336,
|
2745 |
+
"grad_norm": 0.604902446269989,
|
2746 |
+
"kl": 0.15380859375,
|
2747 |
+
"learning_rate": 9.987800627396306e-06,
|
2748 |
+
"loss": 0.0061,
|
2749 |
+
"reward": 1.2101359963417053,
|
2750 |
+
"reward_std": 0.16694805398583412,
|
2751 |
+
"rewards/format_reward_rec": 1.0,
|
2752 |
+
"rewards/iou_reward": 0.21013597398996353,
|
2753 |
+
"step": 196
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"clip_ratio": 0.0,
|
2757 |
+
"completion_length": 100.5625,
|
2758 |
+
"epoch": 0.0024523228601304584,
|
2759 |
+
"grad_norm": 0.5739537477493286,
|
2760 |
+
"kl": 0.1357421875,
|
2761 |
+
"learning_rate": 9.987738385699348e-06,
|
2762 |
+
"loss": 0.0054,
|
2763 |
+
"reward": 1.738525927066803,
|
2764 |
+
"reward_std": 0.10700106248259544,
|
2765 |
+
"rewards/format_reward_rec": 1.0,
|
2766 |
+
"rewards/iou_reward": 0.7385258674621582,
|
2767 |
+
"step": 197
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"clip_ratio": 0.0,
|
2771 |
+
"completion_length": 85.90625,
|
2772 |
+
"epoch": 0.0024647711995219837,
|
2773 |
+
"grad_norm": 0.5847993493080139,
|
2774 |
+
"kl": 0.1318359375,
|
2775 |
+
"learning_rate": 9.987676144002391e-06,
|
2776 |
+
"loss": 0.0053,
|
2777 |
+
"reward": 1.9518784284591675,
|
2778 |
+
"reward_std": 0.01839788258075714,
|
2779 |
+
"rewards/format_reward_rec": 1.0,
|
2780 |
+
"rewards/iou_reward": 0.9518784284591675,
|
2781 |
+
"step": 198
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"clip_ratio": 0.0,
|
2785 |
+
"completion_length": 87.5,
|
2786 |
+
"epoch": 0.002477219538913509,
|
2787 |
+
"grad_norm": 0.6541993021965027,
|
2788 |
+
"kl": 0.100341796875,
|
2789 |
+
"learning_rate": 9.987613902305433e-06,
|
2790 |
+
"loss": 0.004,
|
2791 |
+
"reward": 1.848372757434845,
|
2792 |
+
"reward_std": 0.1364253256469965,
|
2793 |
+
"rewards/format_reward_rec": 1.0,
|
2794 |
+
"rewards/iou_reward": 0.8483727872371674,
|
2795 |
+
"step": 199
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"clip_ratio": 0.0,
|
2799 |
+
"completion_length": 87.0625,
|
2800 |
+
"epoch": 0.0024896678783050343,
|
2801 |
+
"grad_norm": 0.7986785173416138,
|
2802 |
+
"kl": 0.12353515625,
|
2803 |
+
"learning_rate": 9.987551660608475e-06,
|
2804 |
+
"loss": 0.005,
|
2805 |
+
"reward": 1.69829922914505,
|
2806 |
+
"reward_std": 0.1897860188037157,
|
2807 |
+
"rewards/format_reward_rec": 0.96875,
|
2808 |
+
"rewards/iou_reward": 0.7295492589473724,
|
2809 |
+
"step": 200
|
2810 |
+
}
|
2811 |
+
],
|
2812 |
+
"logging_steps": 1.0,
|
2813 |
+
"max_steps": 160664,
|
2814 |
+
"num_input_tokens_seen": 0,
|
2815 |
+
"num_train_epochs": 2,
|
2816 |
+
"save_steps": 100,
|
2817 |
+
"stateful_callbacks": {
|
2818 |
+
"TrainerControl": {
|
2819 |
+
"args": {
|
2820 |
+
"should_epoch_stop": false,
|
2821 |
+
"should_evaluate": false,
|
2822 |
+
"should_log": false,
|
2823 |
+
"should_save": true,
|
2824 |
+
"should_training_stop": false
|
2825 |
+
},
|
2826 |
+
"attributes": {}
|
2827 |
+
}
|
2828 |
+
},
|
2829 |
+
"total_flos": 0.0,
|
2830 |
+
"train_batch_size": 8,
|
2831 |
+
"trial_name": null,
|
2832 |
+
"trial_params": null
|
2833 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:551863c0d96a4b9d1205af0398c8578c24624641a94db62faea5bfdbd4a427be
|
3 |
+
size 8312
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|