--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: ner-deBERTa-v2-x-large results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.7384370015948963 - name: Recall type: recall value: 0.7377832861189801 - name: F1 type: f1 value: 0.7381099991143388 - name: Accuracy type: accuracy value: 0.9460966943038657 --- # ner-deBERTa-v2-x-large This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3963 - Precision: 0.7384 - Recall: 0.7378 - F1: 0.7381 - Accuracy: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 219 | 0.4082 | 0.6932 | 0.7087 | 0.7009 | 0.9386 | | No log | 2.0 | 439 | 0.4299 | 0.7467 | 0.6948 | 0.7198 | 0.9426 | | 0.0094 | 3.0 | 658 | 0.4086 | 0.7435 | 0.7072 | 0.7249 | 0.9441 | | 0.0094 | 4.0 | 878 | 0.3873 | 0.7426 | 0.7420 | 0.7423 | 0.9461 | | 0.0054 | 4.99 | 1095 | 0.3963 | 0.7384 | 0.7378 | 0.7381 | 0.9461 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3