File size: 22,808 Bytes
55a294e
 
 
 
 
 
9b6de2c
55a294e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe53f30
 
 
 
55a294e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe53f30
55a294e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d86d80
702a37c
55a294e
702a37c
55a294e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
---
{}
---
# Instella-VL-1B ✨
Welcome to the official repository for **Instella-VL-1B**, AMD's first ever Vision-Language Model (VLM). This repository provides a detailed guide for training and inference with **Instella-VL-1B**. Developed from AMD's **Instella-1B** (previously known as [AMD OLMo 1B SFT](https://www.amd.com/en/developer/resources/technical-articles/introducing-the-first-amd-1b-language-model.html) LLM), this model is fully open-source, with both model weights and training code available for AMD GPUs (MI300). Its compact size aims to make it accessible to a broad spectrum of researchers, developers, and enthusiasts, enabling them to build upon, modify, and integrate it into their own projects.

[[GitHub](https://github.com/AMD-AIG-AIMA/InstellaVL)][[Blog](https://rocm.blogs.amd.com/artificial-intelligence/Instella-BL-1B-VLM/README.html)]

## Main Results
We compare our model with models which only releases the model weights (with * in the below table) and also models which releases weights, data curvation and all training details.

<table class="tg"><thead>
  <tr>
    <td class="tg-0pky"></td>
    <td class="tg-c3ow">DeepSeek-VL-1.3B *</td>
    <td class="tg-c3ow">InternVL2-1B *</td>
    <td class="tg-c3ow">InternVL2.5-1B *</td>
    <td class="tg-c3ow">TinyLLaVA-2.4B</td>
    <td class="tg-c3ow">TinyLLaVA-1.5B</td>
    <td class="tg-c3ow">llava-onevision-1b</td>
    <td class="tg-c3ow">MiniCPM-V-2</td>
    <td class="tg-c3ow">Instella-VL-1B</td>
  </tr></thead>
<tbody>
  <tr>
    <td class="tg-c3ow">GQA</td>
    <td class="tg-c3ow">--</td>
    <td class="tg-c3ow">55.06</td>
    <td class="tg-c3ow">56.66</td>
    <td class="tg-c3ow">61.58</td>
    <td class="tg-c3ow">60.28</td>
    <td class="tg-c3ow">57.95</td>
    <td class="tg-c3ow">--</td>
    <td class="tg-c3ow">61.52</td>
  </tr>
  <tr>
    <td class="tg-c3ow">SQA</td>
    <td class="tg-c3ow">64.52</td>
    <td class="tg-c3ow">89.54</td>
    <td class="tg-c3ow">93.90</td>
    <td class="tg-c3ow">64.30</td>
    <td class="tg-c3ow">59.69</td>
    <td class="tg-c3ow">59.25</td>
    <td class="tg-c3ow">76.10</td>
    <td class="tg-c3ow">83.74</td>
  </tr>
  <tr>
    <td class="tg-c3ow">POPE</td>
    <td class="tg-c3ow">85.80</td>
    <td class="tg-c3ow">87.40</td>
    <td class="tg-c3ow">89.95</td>
    <td class="tg-c3ow">85.66</td>
    <td class="tg-c3ow">84.77</td>
    <td class="tg-c3ow">87.17</td>
    <td class="tg-c3ow">86.56</td>
    <td class="tg-c3ow">86.73</td>
  </tr>
  <tr>
    <td class="tg-c3ow">MM-Bench</td>
    <td class="tg-c3ow">64.34</td>
    <td class="tg-c3ow">61.70</td>
    <td class="tg-c3ow">68.40</td>
    <td class="tg-c3ow">58.16</td>
    <td class="tg-c3ow">51.28</td>
    <td class="tg-c3ow">44.60</td>
    <td class="tg-c3ow">70.44</td>
    <td class="tg-c3ow">69.17</td>
  </tr>
  <tr>
    <td class="tg-c3ow">seedbench</td>
    <td class="tg-c3ow">65.94</td>
    <td class="tg-c3ow">65.90</td>
    <td class="tg-c3ow">71.30</td>
    <td class="tg-c3ow">63.30</td>
    <td class="tg-c3ow">60.04</td>
    <td class="tg-c3ow">65.43</td>
    <td class="tg-c3ow">66.90</td>
    <td class="tg-c3ow">68.47</td>
  </tr>
  <tr>
    <td class="tg-c3ow">MMMU</td>
    <td class="tg-c3ow">28.67</td>
    <td class="tg-c3ow">32.40</td>
    <td class="tg-c3ow">35.60</td>
    <td class="tg-c3ow">32.11</td>
    <td class="tg-c3ow">29.89</td>
    <td class="tg-c3ow">30.90</td>
    <td class="tg-c3ow">38.55</td>
    <td class="tg-c3ow">29.30</td>
  </tr>
  <tr>
    <td class="tg-c3ow">realworldqa</td>
    <td class="tg-c3ow">50.20</td>
    <td class="tg-c3ow">51.90</td>
    <td class="tg-c3ow">58.30</td>
    <td class="tg-c3ow">52.42</td>
    <td class="tg-c3ow">46.67</td>
    <td class="tg-c3ow">51.63</td>
    <td class="tg-c3ow">55.03</td>
    <td class="tg-c3ow">58.82</td>
  </tr>
  <tr>
    <td class="tg-c3ow">mmstar</td>
    <td class="tg-c3ow">38.30</td>
    <td class="tg-c3ow">46.18</td>
    <td class="tg-c3ow">47.93</td>
    <td class="tg-c3ow">37.17</td>
    <td class="tg-c3ow">31.87</td>
    <td class="tg-c3ow">37.38</td>
    <td class="tg-c3ow">40.93</td>
    <td class="tg-c3ow">43.21</td>
  </tr>
  <tr>
    <td class="tg-c3ow"><span style="font-weight:bold">Average</span></td>
    <td class="tg-c3ow">-</td>
    <td class="tg-c3ow">61.26</td>
    <td class="tg-c3ow">65.26</td>
    <td class="tg-c3ow">56.84</td>
    <td class="tg-c3ow">53.06</td>
    <td class="tg-c3ow">54.29</td>
    <td class="tg-c3ow">-</td>
    <td class="tg-c3ow">62.62</td>
  </tr>
  <tr>
    <td class="tg-c3ow">ocrbench</td>
    <td class="tg-c3ow">41.40</td>
    <td class="tg-c3ow">74.40</td>
    <td class="tg-c3ow">74.20</td>
    <td class="tg-c3ow">28.90</td>
    <td class="tg-c3ow">34.40</td>
    <td class="tg-c3ow">43.00</td>
    <td class="tg-c3ow">60.00</td>
    <td class="tg-c3ow">67.90</td>
  </tr>
  <tr>
    <td class="tg-c3ow">TextVQA</td>
    <td class="tg-c3ow">57.54</td>
    <td class="tg-c3ow">69.60</td>
    <td class="tg-c3ow">72.96</td>
    <td class="tg-c3ow">47.05</td>
    <td class="tg-c3ow">49.54</td>
    <td class="tg-c3ow">49.54</td>
    <td class="tg-c3ow">74.23</td>
    <td class="tg-c3ow">71.23</td>
  </tr>
  <tr>
    <td class="tg-c3ow">AI2D</td>
    <td class="tg-c3ow">51.13</td>
    <td class="tg-c3ow">62.40</td>
    <td class="tg-c3ow">67.58</td>
    <td class="tg-c3ow">49.58</td>
    <td class="tg-c3ow">43.10</td>
    <td class="tg-c3ow">57.35</td>
    <td class="tg-c3ow">64.40</td>
    <td class="tg-c3ow">66.65</td>
  </tr>
  <tr>
    <td class="tg-c3ow">ChartQA</td>
    <td class="tg-c3ow">47.40</td>
    <td class="tg-c3ow">71.52</td>
    <td class="tg-c3ow">75.76</td>
    <td class="tg-c3ow">12.96</td>
    <td class="tg-c3ow">15.24</td>
    <td class="tg-c3ow">61.24</td>
    <td class="tg-c3ow">59.80</td>
    <td class="tg-c3ow">72.52</td>
  </tr>
  <tr>
    <td class="tg-c3ow">DocVQA</td>
    <td class="tg-c3ow">35.70</td>
    <td class="tg-c3ow">80.94</td>
    <td class="tg-c3ow">82.76</td>
    <td class="tg-c3ow">25.82</td>
    <td class="tg-c3ow">30.38</td>
    <td class="tg-c3ow">71.22</td>
    <td class="tg-c3ow">69.54</td>
    <td class="tg-c3ow">80.30</td>
  </tr>
  <tr>
    <td class="tg-c3ow">InfoVQA</td>
    <td class="tg-c3ow">20.52</td>
    <td class="tg-c3ow">46.30</td>
    <td class="tg-c3ow">53.62</td>
    <td class="tg-c3ow">21.35</td>
    <td class="tg-c3ow">24.46</td>
    <td class="tg-c3ow">41.18</td>
    <td class="tg-c3ow">38.24</td>
    <td class="tg-c3ow">46.40</td>
  </tr>
  <tr>
    <td class="tg-c3ow">OCR Average</td>
    <td class="tg-c3ow">42.28</td>
    <td class="tg-c3ow">67.53</td>
    <td class="tg-c3ow">71.15</td>
    <td class="tg-c3ow">30.94</td>
    <td class="tg-c3ow">32.85</td>
    <td class="tg-c3ow">53.92</td>
    <td class="tg-c3ow">61.04</td>
    <td class="tg-c3ow">67.50</td>
  </tr>
</tbody></table>

### Quick Start
> [!NOTE]
> Follow below packages list for setting up the inference environment.
> ```bash
> pip==25.0
> wheel==0.45.1
> setuptools==75.8.0
> torch==2.6.0
> torchvision==0.21.0
> transformers==4.49.0
> einops==0.8.0
> ```

```python
import torch
from transformers import AutoTokenizer, AutoProcessor, AutoConfig, AutoModelForCausalLM

from PIL import Image
import requests
from io import BytesIO

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


config = AutoConfig.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("amd/Instella-VL-1B", config=config, trust_remote_code=True)
processor = AutoProcessor.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True).to('cuda') # or 'cpu'
model.eval()
  
# For single image and text
query="Describe the image."
image=load_image("path/to/your_image") # can be a https:// url
out = processor.encode(query, image, model.get_vision_tower().image_processor, tokenizer, config)
inputs = {k: v.to(model.device) for k, v in out.items() if isinstance(v, torch.Tensor)}
with torch.inference_mode():
    output_ids = model.generate(inputs["input_ids"], images=inputs['image_tensor'], image_sizes=out['image_sizes'], do_sample=True, num_beams=1, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=out['stopping_criteria'], eos_token_id=out['eos_token_id'])
outputs = processor.decode(output_ids)
print("InstellaVL: ", outputs)

# For batch of images and text.
query=["Describe the image.", "What is the color of the dog?"]
image=[load_image("../assets/images/instellavl.png"), load_image("../assets/images/example2_dog.jpg")]
outs = processor.batch_encode(query, image, model.get_vision_tower().image_processor, tokenizer, config)

for idx, o in enumerate(outs):
    ins = {k: v.to(model.device) for k, v in o.items() if isinstance(v, torch.Tensor)}
    with torch.inference_mode():
        output_ids = model.generate(ins["input_ids"],
                                    images=ins['image_tensor'],
                                    image_sizes=o['image_sizes'],
                                    do_sample=True,
                                    num_beams=1,
                                    temperature=0.2,
                                    max_new_tokens=1024,
                                    use_cache=True,
                                    stopping_criteria=o['stopping_criteria'],
                                    eos_token_id=o['eos_token_id'])
    outputs = processor.decode(output_ids)
    print("Query: ", query[idx])
    print("InstellaVL: ", outputs)
```

<details>
 <summary><b>TL;DR</b>: Loading from locally saved checkpoint</summary>
 <p><strong>Note:</strong> Do <code>pip install -e . --no-deps</code> to register/include for InstellaVL repo as <code>instellavl</code> package into Python package list.</p>
 
 ``` python
 import torch
 
 # Import essential modules
 from instellavl.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
 from instellavl.conversation import conv_templates, SeparatorStyle
 from instellavl.model.builder import load_pretrained_model
 from instellavl.utils import disable_torch_init
 from instellavl.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
 
 from PIL import Image
 
 import requests
 from io import BytesIO
 
 # Login into HF Hub
 from huggingface_hub import login
 login(token = "<Your HFtoken id>") # Enter your token 
 
 def load_image(image_file):
     if image_file.startswith("http") or image_file.startswith("https"):
         response = requests.get(image_file)
         image = Image.open(BytesIO(response.content)).convert("RGB")
     else:
         image = Image.open(image_file).convert("RGB")
     return image
 
 #
 # ========= CHANGE IMAGE and Query only HERE ============
 image_file = '/path/to/Instella-VL-repo/assets/images/example2_dog.jpg' # Enter the test image path
 query = 'Describe this image.'
 # =======================================================
 
 disable_torch_init()
 conv_mode = 'instella'
 
 # Model loading
 model_path = '<path/to/model-checkpoint-saved-locally>' # Enter your model path, should contain instellavl substring in the name.
 model_name = get_model_name_from_path(model_path)
 tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, False, False)
 model.eval()
 model = model.to('cuda') # change to 'cpu' if not 'cuda'
 
 # Image pre-processing
 image = load_image(image_file)
 image_tensor = process_images([image], image_processor, model.config)
 image_tensor = image_processor.preprocess(image, return_tensors="pt")["pixel_values"].to(model.dtype)
 
 # Text pre-processing - follow the below logic too when there is no Image:
 # if images is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in text:
 #     question = DEFAULT_IMAGE_TOKEN + "\n" + text
 # else:
 #     question = text
 query = query.replace(DEFAULT_IMAGE_TOKEN, "").strip()
 question = DEFAULT_IMAGE_TOKEN + "\n" + query
 conv = conv_templates[conv_mode].copy()
 conv.append_message(conv.roles[0], question)
 conv.append_message(conv.roles[1], None)
 prompt_question = conv.get_prompt()
 
 # Final arrangements required
 input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0)
 keywords = [conv.sep]
 image_sizes = [image.size]
 stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)]
 terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("|||IP_ADDRESS|||")]
 
 with torch.inference_mode():
     output_ids = model.generate(input_ids.to(model.device), images=image_tensor.to(model.device), image_sizes=image_sizes, do_sample=True, num_beams=1, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=stopping_criteria, eos_token_id=terminators)
 
 outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
 print("InstellaVL: ", outputs)
 ```
</details>

## Model Architecture

| Parts        | Parameter size   | Number of layers  | Number of heads	| Hidden size	| Patch Size  |
| ------------- |:-------------:|:-----:|:-----:|:-----:|:-----:|
| Vision Encoder | 300M | 24|  16 | 1024 | 14 |
| MLP | 6.3M | 2 | - | 2048 | - |
| LM | 1.2B | 16 |	16 |	2048 |	- |

We initialize the vision encoder from [CLIP-ViT-L/14@336](https://huggingface.co/openai/clip-vit-large-patch14-336) and initialize LM from [AMD OLMo 1B SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT)

## Training Stages

| Stages        | MLP Warmup           | Pretraining  | Instruction Tuning  |
| ------------- |:-------------:|:-----:|:-----:|
| Tunable Parts | Adapter | Entire Model | Entire Model |

## Hardware
Training was conducted with up to 4 nodes, totaling 32 GPUs. Each node comprises [8 AMD Instinct™ MI300X GPUs](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) 

**MLP warmup**: 1 node  
**Pretraining**: 2 nodes  
**Finetune**: 4 nodes 

## Datasets

### MLP Warmup
[BLIP558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)

<h3 align="center">Pretraining Stage</h3>

| **Domain** | **Datasets** | **Num of Examples** | **Licenses** |
|---|:---:|---:|:---|
| Image Captions | [BLIP150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain), [COCO118K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain), [CC3M-Recap](https://huggingface.co/datasets/lmms-lab/LLaVA-ReCap-CC3M),  [Pixmo_Cap](https://huggingface.co/datasets/allenai/pixmo-cap) | 3.52M | BSD 3-Clause for BLIP150K, COCO118K; Apache 2 for CC3M-Recap; ODC-BY-1.0 for Pixmo_Cap; see source materials for CC3M-Recap |
| OCR | [SynthDog_EN](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data), [SynthDog_ZH](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data), [UReader](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data), [ART](https://rrc.cvc.uab.es/?ch=14&com=downloads), [COCO-Text](https://bgshih.github.io/cocotext/), [HierText](https://github.com/google-research-datasets/hiertext), [Uber-Text](https://s3-us-west-2.amazonaws.com/uber-common-public/ubertext/index.html), [TextOCR](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [OpenVINO](https://github.com/openvinotoolkit/cvat), [MLT-17](https://rrc.cvc.uab.es/?ch=8&com=downloads) | 913K | Apache 2 for SynthDog_EN, SynthDog_ZH, UReader, TextOCR, OpenVINO; CC By 4.0 for COCO-Text; CC BY-SA 4.0 for HierText, Uber-Text; See source materials for ART, MLT-17 |
| Doc | [DocVQA](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [DocStruct4M](https://huggingface.co/datasets/mPLUG/DocStruct4M) | 410K | Apache 2 |
| Table & Chart & Plot | [Chart2Text](https://github.com/vis-nlp/Chart-to-text/tree/main/pew_dataset/dataset/imgs), [UniChart](https://huggingface.co/datasets/ahmed-masry/unichart-pretrain-data), [PlotQA](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [WidgetCaption](https://huggingface.co/datasets/rootsautomation/RICO-WidgetCaptioning?row=0), [Screen2Words](https://huggingface.co/datasets/rootsautomation/RICO-Screen2Words), [SciGraphQA-295K](https://huggingface.co/datasets/alexshengzhili/SciGraphQA-295K-train), [Paper2Fig100K](https://zenodo.org/records/7299423#.Y2lzonbMKUl), [MMC Instruction](https://huggingface.co/datasets/xywang1/MMC/viewer/MMC-Instruction), [M-Paper](https://huggingface.co/datasets/mPLUG/M-Paper) | 1.97M | GPL-3.0 for Chart2Text; MIT for UniChart, SciGraphQA-295K; Apache 2 for PlotQA, M-Paper; CC By 4.0 for WidgetCaption, Screen2Words, Paper2Fig100K; CC BY-SA 4.0 for MMC Instruction |
| Text Only | [Evol-Instruct-GPT-4](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data/tree/main/evol_instruct) | 70K | Apache 2 |

<h3 align="center">Instruction-tuning Stage</h3>

| **Domain** | **Datasets** | **Num of Examples** | **Licenses** |
|---|:---:|---:|:---|
| General | [AOKVQA, CLEVR, Hateful Memes, Image Textualization, OKVQA, ScienceQA, ShareGPT-4V, TallyQA, Visual7W, VizWiz, VQAv2, WebSight, ALLaVA Instruct, Cambrian, COCO Caption, IconQA, LLaVA-158K, LLaVAR, RefCOCO, ShareGPT-4O, Vision FLAN, VisText, VQARAD, VSR, InterGPS](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [Image-Paragraph-Captioning, ImageNet, COCO-GOI, COCO-ITM, Visual Dialog, SNLI-VE](https://huggingface.co/datasets/MMInstruction/M3IT), [Web-Landmark, Web-Celebrity, SAM, LAION-GPT-4V-Dataset, OODVQA]( https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/tree/main), [Pixmo_Cap](https://huggingface.co/datasets/allenai/pixmo-cap), [Pixmo_Count](https://huggingface.co/datasets/allenai/pixmo-count), [Pixmo_Points](https://huggingface.co/datasets/allenai/pixmo-points), [Pixmo_Ask_Model_Anything](https://huggingface.co/datasets/allenai/pixmo-ask-model-anything),   [SVIT_Core_150K](https://huggingface.co/datasets/BAAI/SVIT), [Localized Narratives](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron) | 2.66M | see source materials for Image-Paragraph-Captioning, ImageNet, COCO-GOI, COCO-ITM, Visual Dialog, SNLI-VE; ODC-BY-1.0 for Pixmo_Cap, Pixmo_Count, Pixmo_Points, Pixmo_Ask_Model_Anything; CC By 4.0 for SVIT_Core_150K, Localized Narratives; Apache 2 for rest of the datasets; |
| Table & Chart & Screen | [AI2D, ChartQA, DocVQA, FigureQA, InfographicVQA, RoBUT-SQA, RoBUT-WTQ, TQA, UReader IE, UReader QA, Chart2Text, , Diagram Image2Text, DVQA, HiTab, LRV Chart, RoBUT WikiSQL, Screen2Words, UReader Caption, UReader KG, VisualMRC](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [TinyChartData](https://huggingface.co/datasets/mPLUG/TinyChartData) | 866K | Apache 2 |
| Doc | [ArxivQA](https://huggingface.co/datasets/MMInstruction/ArxivQA), [DocDownstream-1.0](https://huggingface.co/datasets/mPLUG/DocDownstream-1.0), [DocReason25K](https://huggingface.co/datasets/mPLUG/DocReason25K), [DocStruct4M](https://huggingface.co/datasets/mPLUG/DocStruct4M), [Pixmo_Docs](https://huggingface.co/datasets/allenai/pixmo-docs) | 522K | CC BY-SA 4.0 for ArxivQA; Apache 2 for DocDownstream-1.0, DocReason25K, DocStruct4M; ODC-BY-1.0 for Pixmo_Docs |
| General OCR | [ChromeWriting, IIIT5K, K12 Printing, Rendered Text, TextCaps, HME100K, IAM, TextOCR-GPT-4V](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [SynthDog-EN](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data) | 84K | Apache 2 |
| Math & Reasoning | [MAVIS Manual Collection, CLEVR-Math, Geo170K QA, GEOS, GeoMVerse, MapQA, Super-CLEVR, UniGeo, LRV Normal, Visual Genome, MAVIS Data Engine, Geo170K Align, Geometry3K, GeoQA+, TabMWP, GQA, RAVEN, MathVision, KVQA, VCR](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [FinQA](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron), [Design2Code, IDK](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/) | 460K | CC By 4.0 for FinQA; Apache 2 for rest of the datasets |
| Others | [IQA, MOCHEG, Shapes](https://huggingface.co/datasets/MMInstruction/M3IT), [ALFWorld, Q-Instruct-DB](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/) | 479K | see source materials for IQA, MOCHEG, Shapes; Apache 2 for ALFWorld, Q-Instruct-DB |
| Text Only | [MathQA, Magpie Pro (L3 MT), Magpie Pro (Qwen2 ST), Magpie Pro (L3 ST)](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) | 480K | Apache 2 |

> [!NOTE]
> Further, to strengthen model’s understanding of science-based and general reasoning questions, as identified through error analysis, we oversampled (almost doubled the volume) specific datasets from the SFT dataset pool as detailed below.
> 
> Oversampled (~2x sampling rate): ScienceQA, AI2D, PMC-VQA, Cambrian, and TQA
>
> Further information concerning the training datasets, including applicable licensing terms and use restrictions, may be located at the linked source location.


For the details of training hyperparameters, please check [our github repo](https://github.com/AMD-AIG-AIMA/Instella-VL)

## Contributors
**Core contributors:** [Ximeng Sun](https://sunxm2357.github.io/), [Aditya Kumar Singh](https://rodosingh.github.io), [Gowtham Ramesh](https://www.linkedin.com/in/gowtham1/), [Zicheng Liu](https://zicliu.wixsite.com/mysite) 

**Contributors:** [Pratik Prabhanjan Brahma](https://www.linkedin.com/in/pratik-p-brahma/), [Ze Wang](https://www.linkedin.com/in/ze-wang-1379601a5/), [Jiang Liu](https://joellliu.github.io/), [Jialian Wu](https://jialianwu.com/), [Prakamya Mishra](https://prakamya-mishra.github.io/), [Xiaodong Yu](https://www.xiaodongyu.me/), [Yusheng Su](https://yushengsu-thu.github.io/), [Sudhanshu Ranjan](https://www.linkedin.com/in/sudhanshu-ranjan-33a216124), [Emad Barsoum](https://www.linkedin.com/in/ebarsoum/)


##  Bias, Risks, and Limitations
This model is made accessible without any safety guarantees. Users should be aware that the model may generate outputs that are sensitive, inaccurate, harmful, biased, or otherwise objectionable based on user prompts. It is crucial for users to conduct comprehensive safety evaluations, implement safety filtering, and verify the model's outputs to mitigate these risks.

##  License
See Files for license and any notices. 

##  Citing

```bibtex
@misc{Instella-VL-1B, 
    title = {Instella-VL-1B: First AMD Vision Language Model}, 
    url = {https://huggingface.co/amd/Instella-VL-1B}, 
    author = {Ximeng Sun, Aditya Singh, Gowtham Ramesh, Jiang Liu, Ze Wang, Sudhanshu Ranjan, Pratik Prabhanjan Brahma, Prakamya Mishra,  Jialian Wu, Xiaodong Yu, Yusheng Su, Emad Barsoum, Zicheng Liu}, 
    month = {March}, 
    year = {2025} 
} 
```