File size: 22,808 Bytes
55a294e 9b6de2c 55a294e fe53f30 55a294e fe53f30 55a294e 8d86d80 702a37c 55a294e 702a37c 55a294e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
---
{}
---
# Instella-VL-1B ✨
Welcome to the official repository for **Instella-VL-1B**, AMD's first ever Vision-Language Model (VLM). This repository provides a detailed guide for training and inference with **Instella-VL-1B**. Developed from AMD's **Instella-1B** (previously known as [AMD OLMo 1B SFT](https://www.amd.com/en/developer/resources/technical-articles/introducing-the-first-amd-1b-language-model.html) LLM), this model is fully open-source, with both model weights and training code available for AMD GPUs (MI300). Its compact size aims to make it accessible to a broad spectrum of researchers, developers, and enthusiasts, enabling them to build upon, modify, and integrate it into their own projects.
[[GitHub](https://github.com/AMD-AIG-AIMA/InstellaVL)][[Blog](https://rocm.blogs.amd.com/artificial-intelligence/Instella-BL-1B-VLM/README.html)]
## Main Results
We compare our model with models which only releases the model weights (with * in the below table) and also models which releases weights, data curvation and all training details.
<table class="tg"><thead>
<tr>
<td class="tg-0pky"></td>
<td class="tg-c3ow">DeepSeek-VL-1.3B *</td>
<td class="tg-c3ow">InternVL2-1B *</td>
<td class="tg-c3ow">InternVL2.5-1B *</td>
<td class="tg-c3ow">TinyLLaVA-2.4B</td>
<td class="tg-c3ow">TinyLLaVA-1.5B</td>
<td class="tg-c3ow">llava-onevision-1b</td>
<td class="tg-c3ow">MiniCPM-V-2</td>
<td class="tg-c3ow">Instella-VL-1B</td>
</tr></thead>
<tbody>
<tr>
<td class="tg-c3ow">GQA</td>
<td class="tg-c3ow">--</td>
<td class="tg-c3ow">55.06</td>
<td class="tg-c3ow">56.66</td>
<td class="tg-c3ow">61.58</td>
<td class="tg-c3ow">60.28</td>
<td class="tg-c3ow">57.95</td>
<td class="tg-c3ow">--</td>
<td class="tg-c3ow">61.52</td>
</tr>
<tr>
<td class="tg-c3ow">SQA</td>
<td class="tg-c3ow">64.52</td>
<td class="tg-c3ow">89.54</td>
<td class="tg-c3ow">93.90</td>
<td class="tg-c3ow">64.30</td>
<td class="tg-c3ow">59.69</td>
<td class="tg-c3ow">59.25</td>
<td class="tg-c3ow">76.10</td>
<td class="tg-c3ow">83.74</td>
</tr>
<tr>
<td class="tg-c3ow">POPE</td>
<td class="tg-c3ow">85.80</td>
<td class="tg-c3ow">87.40</td>
<td class="tg-c3ow">89.95</td>
<td class="tg-c3ow">85.66</td>
<td class="tg-c3ow">84.77</td>
<td class="tg-c3ow">87.17</td>
<td class="tg-c3ow">86.56</td>
<td class="tg-c3ow">86.73</td>
</tr>
<tr>
<td class="tg-c3ow">MM-Bench</td>
<td class="tg-c3ow">64.34</td>
<td class="tg-c3ow">61.70</td>
<td class="tg-c3ow">68.40</td>
<td class="tg-c3ow">58.16</td>
<td class="tg-c3ow">51.28</td>
<td class="tg-c3ow">44.60</td>
<td class="tg-c3ow">70.44</td>
<td class="tg-c3ow">69.17</td>
</tr>
<tr>
<td class="tg-c3ow">seedbench</td>
<td class="tg-c3ow">65.94</td>
<td class="tg-c3ow">65.90</td>
<td class="tg-c3ow">71.30</td>
<td class="tg-c3ow">63.30</td>
<td class="tg-c3ow">60.04</td>
<td class="tg-c3ow">65.43</td>
<td class="tg-c3ow">66.90</td>
<td class="tg-c3ow">68.47</td>
</tr>
<tr>
<td class="tg-c3ow">MMMU</td>
<td class="tg-c3ow">28.67</td>
<td class="tg-c3ow">32.40</td>
<td class="tg-c3ow">35.60</td>
<td class="tg-c3ow">32.11</td>
<td class="tg-c3ow">29.89</td>
<td class="tg-c3ow">30.90</td>
<td class="tg-c3ow">38.55</td>
<td class="tg-c3ow">29.30</td>
</tr>
<tr>
<td class="tg-c3ow">realworldqa</td>
<td class="tg-c3ow">50.20</td>
<td class="tg-c3ow">51.90</td>
<td class="tg-c3ow">58.30</td>
<td class="tg-c3ow">52.42</td>
<td class="tg-c3ow">46.67</td>
<td class="tg-c3ow">51.63</td>
<td class="tg-c3ow">55.03</td>
<td class="tg-c3ow">58.82</td>
</tr>
<tr>
<td class="tg-c3ow">mmstar</td>
<td class="tg-c3ow">38.30</td>
<td class="tg-c3ow">46.18</td>
<td class="tg-c3ow">47.93</td>
<td class="tg-c3ow">37.17</td>
<td class="tg-c3ow">31.87</td>
<td class="tg-c3ow">37.38</td>
<td class="tg-c3ow">40.93</td>
<td class="tg-c3ow">43.21</td>
</tr>
<tr>
<td class="tg-c3ow"><span style="font-weight:bold">Average</span></td>
<td class="tg-c3ow">-</td>
<td class="tg-c3ow">61.26</td>
<td class="tg-c3ow">65.26</td>
<td class="tg-c3ow">56.84</td>
<td class="tg-c3ow">53.06</td>
<td class="tg-c3ow">54.29</td>
<td class="tg-c3ow">-</td>
<td class="tg-c3ow">62.62</td>
</tr>
<tr>
<td class="tg-c3ow">ocrbench</td>
<td class="tg-c3ow">41.40</td>
<td class="tg-c3ow">74.40</td>
<td class="tg-c3ow">74.20</td>
<td class="tg-c3ow">28.90</td>
<td class="tg-c3ow">34.40</td>
<td class="tg-c3ow">43.00</td>
<td class="tg-c3ow">60.00</td>
<td class="tg-c3ow">67.90</td>
</tr>
<tr>
<td class="tg-c3ow">TextVQA</td>
<td class="tg-c3ow">57.54</td>
<td class="tg-c3ow">69.60</td>
<td class="tg-c3ow">72.96</td>
<td class="tg-c3ow">47.05</td>
<td class="tg-c3ow">49.54</td>
<td class="tg-c3ow">49.54</td>
<td class="tg-c3ow">74.23</td>
<td class="tg-c3ow">71.23</td>
</tr>
<tr>
<td class="tg-c3ow">AI2D</td>
<td class="tg-c3ow">51.13</td>
<td class="tg-c3ow">62.40</td>
<td class="tg-c3ow">67.58</td>
<td class="tg-c3ow">49.58</td>
<td class="tg-c3ow">43.10</td>
<td class="tg-c3ow">57.35</td>
<td class="tg-c3ow">64.40</td>
<td class="tg-c3ow">66.65</td>
</tr>
<tr>
<td class="tg-c3ow">ChartQA</td>
<td class="tg-c3ow">47.40</td>
<td class="tg-c3ow">71.52</td>
<td class="tg-c3ow">75.76</td>
<td class="tg-c3ow">12.96</td>
<td class="tg-c3ow">15.24</td>
<td class="tg-c3ow">61.24</td>
<td class="tg-c3ow">59.80</td>
<td class="tg-c3ow">72.52</td>
</tr>
<tr>
<td class="tg-c3ow">DocVQA</td>
<td class="tg-c3ow">35.70</td>
<td class="tg-c3ow">80.94</td>
<td class="tg-c3ow">82.76</td>
<td class="tg-c3ow">25.82</td>
<td class="tg-c3ow">30.38</td>
<td class="tg-c3ow">71.22</td>
<td class="tg-c3ow">69.54</td>
<td class="tg-c3ow">80.30</td>
</tr>
<tr>
<td class="tg-c3ow">InfoVQA</td>
<td class="tg-c3ow">20.52</td>
<td class="tg-c3ow">46.30</td>
<td class="tg-c3ow">53.62</td>
<td class="tg-c3ow">21.35</td>
<td class="tg-c3ow">24.46</td>
<td class="tg-c3ow">41.18</td>
<td class="tg-c3ow">38.24</td>
<td class="tg-c3ow">46.40</td>
</tr>
<tr>
<td class="tg-c3ow">OCR Average</td>
<td class="tg-c3ow">42.28</td>
<td class="tg-c3ow">67.53</td>
<td class="tg-c3ow">71.15</td>
<td class="tg-c3ow">30.94</td>
<td class="tg-c3ow">32.85</td>
<td class="tg-c3ow">53.92</td>
<td class="tg-c3ow">61.04</td>
<td class="tg-c3ow">67.50</td>
</tr>
</tbody></table>
### Quick Start
> [!NOTE]
> Follow below packages list for setting up the inference environment.
> ```bash
> pip==25.0
> wheel==0.45.1
> setuptools==75.8.0
> torch==2.6.0
> torchvision==0.21.0
> transformers==4.49.0
> einops==0.8.0
> ```
```python
import torch
from transformers import AutoTokenizer, AutoProcessor, AutoConfig, AutoModelForCausalLM
from PIL import Image
import requests
from io import BytesIO
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
config = AutoConfig.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("amd/Instella-VL-1B", config=config, trust_remote_code=True)
processor = AutoProcessor.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True).to('cuda') # or 'cpu'
model.eval()
# For single image and text
query="Describe the image."
image=load_image("path/to/your_image") # can be a https:// url
out = processor.encode(query, image, model.get_vision_tower().image_processor, tokenizer, config)
inputs = {k: v.to(model.device) for k, v in out.items() if isinstance(v, torch.Tensor)}
with torch.inference_mode():
output_ids = model.generate(inputs["input_ids"], images=inputs['image_tensor'], image_sizes=out['image_sizes'], do_sample=True, num_beams=1, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=out['stopping_criteria'], eos_token_id=out['eos_token_id'])
outputs = processor.decode(output_ids)
print("InstellaVL: ", outputs)
# For batch of images and text.
query=["Describe the image.", "What is the color of the dog?"]
image=[load_image("../assets/images/instellavl.png"), load_image("../assets/images/example2_dog.jpg")]
outs = processor.batch_encode(query, image, model.get_vision_tower().image_processor, tokenizer, config)
for idx, o in enumerate(outs):
ins = {k: v.to(model.device) for k, v in o.items() if isinstance(v, torch.Tensor)}
with torch.inference_mode():
output_ids = model.generate(ins["input_ids"],
images=ins['image_tensor'],
image_sizes=o['image_sizes'],
do_sample=True,
num_beams=1,
temperature=0.2,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=o['stopping_criteria'],
eos_token_id=o['eos_token_id'])
outputs = processor.decode(output_ids)
print("Query: ", query[idx])
print("InstellaVL: ", outputs)
```
<details>
<summary><b>TL;DR</b>: Loading from locally saved checkpoint</summary>
<p><strong>Note:</strong> Do <code>pip install -e . --no-deps</code> to register/include for InstellaVL repo as <code>instellavl</code> package into Python package list.</p>
``` python
import torch
# Import essential modules
from instellavl.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from instellavl.conversation import conv_templates, SeparatorStyle
from instellavl.model.builder import load_pretrained_model
from instellavl.utils import disable_torch_init
from instellavl.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
from PIL import Image
import requests
from io import BytesIO
# Login into HF Hub
from huggingface_hub import login
login(token = "<Your HFtoken id>") # Enter your token
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
#
# ========= CHANGE IMAGE and Query only HERE ============
image_file = '/path/to/Instella-VL-repo/assets/images/example2_dog.jpg' # Enter the test image path
query = 'Describe this image.'
# =======================================================
disable_torch_init()
conv_mode = 'instella'
# Model loading
model_path = '<path/to/model-checkpoint-saved-locally>' # Enter your model path, should contain instellavl substring in the name.
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, False, False)
model.eval()
model = model.to('cuda') # change to 'cpu' if not 'cuda'
# Image pre-processing
image = load_image(image_file)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_processor.preprocess(image, return_tensors="pt")["pixel_values"].to(model.dtype)
# Text pre-processing - follow the below logic too when there is no Image:
# if images is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in text:
# question = DEFAULT_IMAGE_TOKEN + "\n" + text
# else:
# question = text
query = query.replace(DEFAULT_IMAGE_TOKEN, "").strip()
question = DEFAULT_IMAGE_TOKEN + "\n" + query
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
# Final arrangements required
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0)
keywords = [conv.sep]
image_sizes = [image.size]
stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)]
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("|||IP_ADDRESS|||")]
with torch.inference_mode():
output_ids = model.generate(input_ids.to(model.device), images=image_tensor.to(model.device), image_sizes=image_sizes, do_sample=True, num_beams=1, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=stopping_criteria, eos_token_id=terminators)
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
print("InstellaVL: ", outputs)
```
</details>
## Model Architecture
| Parts | Parameter size | Number of layers | Number of heads | Hidden size | Patch Size |
| ------------- |:-------------:|:-----:|:-----:|:-----:|:-----:|
| Vision Encoder | 300M | 24| 16 | 1024 | 14 |
| MLP | 6.3M | 2 | - | 2048 | - |
| LM | 1.2B | 16 | 16 | 2048 | - |
We initialize the vision encoder from [CLIP-ViT-L/14@336](https://huggingface.co/openai/clip-vit-large-patch14-336) and initialize LM from [AMD OLMo 1B SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT)
## Training Stages
| Stages | MLP Warmup | Pretraining | Instruction Tuning |
| ------------- |:-------------:|:-----:|:-----:|
| Tunable Parts | Adapter | Entire Model | Entire Model |
## Hardware
Training was conducted with up to 4 nodes, totaling 32 GPUs. Each node comprises [8 AMD Instinct™ MI300X GPUs](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html)
**MLP warmup**: 1 node
**Pretraining**: 2 nodes
**Finetune**: 4 nodes
## Datasets
### MLP Warmup
[BLIP558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
<h3 align="center">Pretraining Stage</h3>
| **Domain** | **Datasets** | **Num of Examples** | **Licenses** |
|---|:---:|---:|:---|
| Image Captions | [BLIP150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain), [COCO118K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain), [CC3M-Recap](https://huggingface.co/datasets/lmms-lab/LLaVA-ReCap-CC3M), [Pixmo_Cap](https://huggingface.co/datasets/allenai/pixmo-cap) | 3.52M | BSD 3-Clause for BLIP150K, COCO118K; Apache 2 for CC3M-Recap; ODC-BY-1.0 for Pixmo_Cap; see source materials for CC3M-Recap |
| OCR | [SynthDog_EN](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data), [SynthDog_ZH](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data), [UReader](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data), [ART](https://rrc.cvc.uab.es/?ch=14&com=downloads), [COCO-Text](https://bgshih.github.io/cocotext/), [HierText](https://github.com/google-research-datasets/hiertext), [Uber-Text](https://s3-us-west-2.amazonaws.com/uber-common-public/ubertext/index.html), [TextOCR](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [OpenVINO](https://github.com/openvinotoolkit/cvat), [MLT-17](https://rrc.cvc.uab.es/?ch=8&com=downloads) | 913K | Apache 2 for SynthDog_EN, SynthDog_ZH, UReader, TextOCR, OpenVINO; CC By 4.0 for COCO-Text; CC BY-SA 4.0 for HierText, Uber-Text; See source materials for ART, MLT-17 |
| Doc | [DocVQA](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [DocStruct4M](https://huggingface.co/datasets/mPLUG/DocStruct4M) | 410K | Apache 2 |
| Table & Chart & Plot | [Chart2Text](https://github.com/vis-nlp/Chart-to-text/tree/main/pew_dataset/dataset/imgs), [UniChart](https://huggingface.co/datasets/ahmed-masry/unichart-pretrain-data), [PlotQA](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [WidgetCaption](https://huggingface.co/datasets/rootsautomation/RICO-WidgetCaptioning?row=0), [Screen2Words](https://huggingface.co/datasets/rootsautomation/RICO-Screen2Words), [SciGraphQA-295K](https://huggingface.co/datasets/alexshengzhili/SciGraphQA-295K-train), [Paper2Fig100K](https://zenodo.org/records/7299423#.Y2lzonbMKUl), [MMC Instruction](https://huggingface.co/datasets/xywang1/MMC/viewer/MMC-Instruction), [M-Paper](https://huggingface.co/datasets/mPLUG/M-Paper) | 1.97M | GPL-3.0 for Chart2Text; MIT for UniChart, SciGraphQA-295K; Apache 2 for PlotQA, M-Paper; CC By 4.0 for WidgetCaption, Screen2Words, Paper2Fig100K; CC BY-SA 4.0 for MMC Instruction |
| Text Only | [Evol-Instruct-GPT-4](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data/tree/main/evol_instruct) | 70K | Apache 2 |
<h3 align="center">Instruction-tuning Stage</h3>
| **Domain** | **Datasets** | **Num of Examples** | **Licenses** |
|---|:---:|---:|:---|
| General | [AOKVQA, CLEVR, Hateful Memes, Image Textualization, OKVQA, ScienceQA, ShareGPT-4V, TallyQA, Visual7W, VizWiz, VQAv2, WebSight, ALLaVA Instruct, Cambrian, COCO Caption, IconQA, LLaVA-158K, LLaVAR, RefCOCO, ShareGPT-4O, Vision FLAN, VisText, VQARAD, VSR, InterGPS](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [Image-Paragraph-Captioning, ImageNet, COCO-GOI, COCO-ITM, Visual Dialog, SNLI-VE](https://huggingface.co/datasets/MMInstruction/M3IT), [Web-Landmark, Web-Celebrity, SAM, LAION-GPT-4V-Dataset, OODVQA]( https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/tree/main), [Pixmo_Cap](https://huggingface.co/datasets/allenai/pixmo-cap), [Pixmo_Count](https://huggingface.co/datasets/allenai/pixmo-count), [Pixmo_Points](https://huggingface.co/datasets/allenai/pixmo-points), [Pixmo_Ask_Model_Anything](https://huggingface.co/datasets/allenai/pixmo-ask-model-anything), [SVIT_Core_150K](https://huggingface.co/datasets/BAAI/SVIT), [Localized Narratives](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron) | 2.66M | see source materials for Image-Paragraph-Captioning, ImageNet, COCO-GOI, COCO-ITM, Visual Dialog, SNLI-VE; ODC-BY-1.0 for Pixmo_Cap, Pixmo_Count, Pixmo_Points, Pixmo_Ask_Model_Anything; CC By 4.0 for SVIT_Core_150K, Localized Narratives; Apache 2 for rest of the datasets; |
| Table & Chart & Screen | [AI2D, ChartQA, DocVQA, FigureQA, InfographicVQA, RoBUT-SQA, RoBUT-WTQ, TQA, UReader IE, UReader QA, Chart2Text, , Diagram Image2Text, DVQA, HiTab, LRV Chart, RoBUT WikiSQL, Screen2Words, UReader Caption, UReader KG, VisualMRC](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [TinyChartData](https://huggingface.co/datasets/mPLUG/TinyChartData) | 866K | Apache 2 |
| Doc | [ArxivQA](https://huggingface.co/datasets/MMInstruction/ArxivQA), [DocDownstream-1.0](https://huggingface.co/datasets/mPLUG/DocDownstream-1.0), [DocReason25K](https://huggingface.co/datasets/mPLUG/DocReason25K), [DocStruct4M](https://huggingface.co/datasets/mPLUG/DocStruct4M), [Pixmo_Docs](https://huggingface.co/datasets/allenai/pixmo-docs) | 522K | CC BY-SA 4.0 for ArxivQA; Apache 2 for DocDownstream-1.0, DocReason25K, DocStruct4M; ODC-BY-1.0 for Pixmo_Docs |
| General OCR | [ChromeWriting, IIIT5K, K12 Printing, Rendered Text, TextCaps, HME100K, IAM, TextOCR-GPT-4V](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [SynthDog-EN](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Mid-Data) | 84K | Apache 2 |
| Math & Reasoning | [MAVIS Manual Collection, CLEVR-Math, Geo170K QA, GEOS, GeoMVerse, MapQA, Super-CLEVR, UniGeo, LRV Normal, Visual Genome, MAVIS Data Engine, Geo170K Align, Geometry3K, GeoQA+, TabMWP, GQA, RAVEN, MathVision, KVQA, VCR](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [FinQA](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron), [Design2Code, IDK](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/) | 460K | CC By 4.0 for FinQA; Apache 2 for rest of the datasets |
| Others | [IQA, MOCHEG, Shapes](https://huggingface.co/datasets/MMInstruction/M3IT), [ALFWorld, Q-Instruct-DB](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/) | 479K | see source materials for IQA, MOCHEG, Shapes; Apache 2 for ALFWorld, Q-Instruct-DB |
| Text Only | [MathQA, Magpie Pro (L3 MT), Magpie Pro (Qwen2 ST), Magpie Pro (L3 ST)](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) | 480K | Apache 2 |
> [!NOTE]
> Further, to strengthen model’s understanding of science-based and general reasoning questions, as identified through error analysis, we oversampled (almost doubled the volume) specific datasets from the SFT dataset pool as detailed below.
>
> Oversampled (~2x sampling rate): ScienceQA, AI2D, PMC-VQA, Cambrian, and TQA
>
> Further information concerning the training datasets, including applicable licensing terms and use restrictions, may be located at the linked source location.
For the details of training hyperparameters, please check [our github repo](https://github.com/AMD-AIG-AIMA/Instella-VL)
## Contributors
**Core contributors:** [Ximeng Sun](https://sunxm2357.github.io/), [Aditya Kumar Singh](https://rodosingh.github.io), [Gowtham Ramesh](https://www.linkedin.com/in/gowtham1/), [Zicheng Liu](https://zicliu.wixsite.com/mysite)
**Contributors:** [Pratik Prabhanjan Brahma](https://www.linkedin.com/in/pratik-p-brahma/), [Ze Wang](https://www.linkedin.com/in/ze-wang-1379601a5/), [Jiang Liu](https://joellliu.github.io/), [Jialian Wu](https://jialianwu.com/), [Prakamya Mishra](https://prakamya-mishra.github.io/), [Xiaodong Yu](https://www.xiaodongyu.me/), [Yusheng Su](https://yushengsu-thu.github.io/), [Sudhanshu Ranjan](https://www.linkedin.com/in/sudhanshu-ranjan-33a216124), [Emad Barsoum](https://www.linkedin.com/in/ebarsoum/)
## Bias, Risks, and Limitations
This model is made accessible without any safety guarantees. Users should be aware that the model may generate outputs that are sensitive, inaccurate, harmful, biased, or otherwise objectionable based on user prompts. It is crucial for users to conduct comprehensive safety evaluations, implement safety filtering, and verify the model's outputs to mitigate these risks.
## License
See Files for license and any notices.
## Citing
```bibtex
@misc{Instella-VL-1B,
title = {Instella-VL-1B: First AMD Vision Language Model},
url = {https://huggingface.co/amd/Instella-VL-1B},
author = {Ximeng Sun, Aditya Singh, Gowtham Ramesh, Jiang Liu, Ze Wang, Sudhanshu Ranjan, Pratik Prabhanjan Brahma, Prakamya Mishra, Jialian Wu, Xiaodong Yu, Yusheng Su, Emad Barsoum, Zicheng Liu},
month = {March},
year = {2025}
}
``` |