File size: 9,345 Bytes
55a294e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from PIL import ImageOps
from PIL.Image import Image

import torch

from typing import Union, List
from tqdm import tqdm

from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import TextInput
from transformers import CLIPImageProcessor
from transformers.processing_utils import (
    ProcessorMixin,
)
from transformers import AutoTokenizer, PreTrainedTokenizer

from .image_processing_instellavl import InstellaVLImageProcessor
from .mm_utils import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, KeywordsStoppingCriteria
from .conversation import conv_templates

def tokenizer_image_token(prompt: str, tokenizer: PreTrainedTokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None)->Union[torch.Tensor, List[torch.Tensor]]:
    r"""
    Tokenizes a prompt containing image tokens and inserts the specified image token index at the appropriate positions.

    Args:
        - prompt (str): The input prompt string containing text and DEFAULT_IMAGE_TOKEN="<image>" placeholders.
        - tokenizer (PreTrainedTokenizer): The tokenizer to use for tokenizing the text chunks.
        - image_token_index (int): The token index to use for the image placeholders. Default is IMAGE_TOKEN_INDEX.
        - return_tensors (str, optional): The type of tensor to return. If "pt", returns a PyTorch tensor. Default is None.

    Returns:
        list or torch.Tensor: The tokenized input IDs as a list or a PyTorch tensor if return_tensors is specified.
    """
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == "pt":
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f"Unsupported tensor type: {return_tensors}")
    return input_ids


class InstellaVLProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("GPTNeoXTokenizerFast")

    def __init__(self, image_processor: InstellaVLImageProcessor = None, tokenizer: AutoTokenizer = None, **kwargs):
        super().__init__(image_processor, tokenizer, **kwargs)
    
    def pad_sequence(self, input_ids: Union[List[torch.Tensor], List[List[torch.Tensor]]], batch_first: bool, padding_value: int, tokenizer: AutoTokenizer):
        if tokenizer.padding_side == "left":
            input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids]
        input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value)
        if tokenizer.padding_side == "left":
            input_ids = torch.flip(input_ids, [1])
        return input_ids
    
    def encode(self,
        text: TextInput = None,
        images: ImageInput = None,
        image_processor: CLIPImageProcessor = None,
        tokenizer: AutoTokenizer = None,
        model_cfg: dict = None,
    ) -> dict:

        if images is not None:
            if isinstance(images, Image):
                # Handle images with EXIF orientation tags, which PIL will ignore by default
                # https://github.com/python-pillow/Pillow/issues/4703
                ImageOps.exif_transpose(images, in_place=True)
                image_sizes = [images.size]
                images = [images]
            elif isinstance(images, list):
                image_sizes = []
                for i in images:
                    ImageOps.exif_transpose(i, in_place=True)
                    image_sizes.append(i.size)
            image_tensor = self.image_processor.process(images, image_processor, model_cfg)['pixel_values']

        text = text.replace(DEFAULT_IMAGE_TOKEN, "").strip()
        if images is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in text:
            question = DEFAULT_IMAGE_TOKEN + "\n" + text
        else:
            question = text
        conv = conv_templates["instella"].copy()
        conv.append_message(conv.roles[0], question)
        conv.append_message(conv.roles[1], None)
        prompt_question = conv.get_prompt()


        input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0)
        keywords = [conv.sep]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("|||IP_ADDRESS|||")]

        out = {
            "input_ids": input_ids,
            "stopping_criteria": [stopping_criteria],
            "eos_token_id": terminators,
        }
        if images is not None:
            out = {
                "image_tensor": image_tensor,
                "image_sizes": image_sizes,
                **out,
            }
        self.tokenizer = tokenizer
        return out

    def batch_encode(self,
        texts: List[TextInput] = None,
        images: List[ImageInput] = None,
        image_processor: CLIPImageProcessor = None,
        tokenizer: AutoTokenizer = None,
        model_cfg: dict = None,
    ):
        
        if texts is None:
            raise ValueError("Text must be provided for batch encoding.")

        if images is None:
            images = [None] * len(text)

        assert isinstance(texts, list), "Since batch encoding happening, provide batch of texts in a list."  

        assert len(texts) == len(images), "The number of texts and images must be equal."

        batch_outs = []
        for txt, img in tqdm(zip(texts, images), total=len(texts), desc="Total Samples to encode"):
            batch_outs.append(self.encode(txt, img, image_processor, tokenizer, model_cfg))

        return batch_outs
        # batched_image_tensors = []
        # batched_text_tokens = []
        # stopping_criterias = []
        # image_sizes = []
        # for t, img in tqdm(zip(text, images), desc="Total Samples to encode"):
        #     if img is not None:
        #         if isinstance(img, Image):
        #             ImageOps.exif_transpose(img, in_place=True)
        #             image_sizes.append(img.size)
        #             img = [img]

        #         elif isinstance(img, list):
        #             tmp_img_sizes = []
        #             for i in img:
        #                 ImageOps.exif_transpose(i, in_place=True)
        #                 tmp_img_sizes.append(i.size)
        #             image_sizes.append(tmp_img_sizes)
        #         batched_image_tensors.append(self.image_processor.process(img, image_processor, model_cfg)['pixel_values'].squeeze(0))
            
        #     t = t.replace(DEFAULT_IMAGE_TOKEN, "").strip()
        #     if img is not None and len(batched_image_tensors[-1]) != 0 and DEFAULT_IMAGE_TOKEN not in t:
        #         question = DEFAULT_IMAGE_TOKEN + "\n" + t
        #     else:
        #         question = t
        #     conv = conv_templates["instella"].copy()
        #     conv.append_message(conv.roles[0], question)
        #     conv.append_message(conv.roles[1], None)
        #     prompt_question = conv.get_prompt()

        #     input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
        #     stopping_criterias.append(KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids.unsqueeze(0)))
        #     batched_text_tokens.append(input_ids)
        #     terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("|||IP_ADDRESS|||")]

        # # Pad the text tokens.
        # pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
        # input_ids = self.pad_sequence(batched_text_tokens, batch_first=True, padding_value=pad_token_ids, tokenizer=tokenizer)
        # attention_masks = input_ids.ne(pad_token_ids)
        # batch_outs = {
        #     "input_ids": input_ids,
        #     "attention_mask": attention_masks,
        #     "pad_token_id": pad_token_ids,
        #     "stopping_criteria": stopping_criterias,
        #     "eos_token_id": terminators,
        # }
        # if images is not None:
        #     batch_outs = {
        #         "image_tensor": batched_image_tensors,
        #         "image_sizes": image_sizes,
        #         **batch_outs
        #     }
        # self.tokenizer = tokenizer
        # return batch_outs

    def decode(self, output_ids: torch.Tensor)->str:
        return self.tokenizer.decode(output_ids[0, :], skip_special_tokens=True).strip()

    def batch_decode(self, output_ids_lst: List[torch.Tensor])->List[str]:
        raise NotImplementedError("Batch decode is not implemented for InstellaVLProcessor")
        # text_decoded_outs = []
        # for out_ids in output_ids_lst:
        #     text_decoded_outs.append(self.decode(out_ids))
        # return text_decoded_outs
        

    
InstellaVLProcessor.register_for_auto_class()