|
from PIL import ImageOps |
|
from PIL.Image import Image |
|
|
|
import torch |
|
|
|
from typing import Union, List |
|
from tqdm import tqdm |
|
|
|
from transformers.image_utils import ImageInput |
|
from transformers.tokenization_utils_base import TextInput |
|
from transformers import CLIPImageProcessor |
|
from transformers.processing_utils import ( |
|
ProcessorMixin, |
|
) |
|
from transformers import AutoTokenizer, PreTrainedTokenizer |
|
|
|
from .image_processing_instellavl import InstellaVLImageProcessor |
|
from .mm_utils import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, KeywordsStoppingCriteria |
|
from .conversation import conv_templates |
|
|
|
def tokenizer_image_token(prompt: str, tokenizer: PreTrainedTokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None)->Union[torch.Tensor, List[torch.Tensor]]: |
|
r""" |
|
Tokenizes a prompt containing image tokens and inserts the specified image token index at the appropriate positions. |
|
|
|
Args: |
|
- prompt (str): The input prompt string containing text and DEFAULT_IMAGE_TOKEN="<image>" placeholders. |
|
- tokenizer (PreTrainedTokenizer): The tokenizer to use for tokenizing the text chunks. |
|
- image_token_index (int): The token index to use for the image placeholders. Default is IMAGE_TOKEN_INDEX. |
|
- return_tensors (str, optional): The type of tensor to return. If "pt", returns a PyTorch tensor. Default is None. |
|
|
|
Returns: |
|
list or torch.Tensor: The tokenized input IDs as a list or a PyTorch tensor if return_tensors is specified. |
|
""" |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == "pt": |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f"Unsupported tensor type: {return_tensors}") |
|
return input_ids |
|
|
|
|
|
class InstellaVLProcessor(ProcessorMixin): |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = ("GPTNeoXTokenizerFast") |
|
|
|
def __init__(self, image_processor: InstellaVLImageProcessor = None, tokenizer: AutoTokenizer = None, **kwargs): |
|
super().__init__(image_processor, tokenizer, **kwargs) |
|
|
|
def pad_sequence(self, input_ids: Union[List[torch.Tensor], List[List[torch.Tensor]]], batch_first: bool, padding_value: int, tokenizer: AutoTokenizer): |
|
if tokenizer.padding_side == "left": |
|
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] |
|
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) |
|
if tokenizer.padding_side == "left": |
|
input_ids = torch.flip(input_ids, [1]) |
|
return input_ids |
|
|
|
def encode(self, |
|
text: TextInput = None, |
|
images: ImageInput = None, |
|
image_processor: CLIPImageProcessor = None, |
|
tokenizer: AutoTokenizer = None, |
|
model_cfg: dict = None, |
|
) -> dict: |
|
|
|
if images is not None: |
|
if isinstance(images, Image): |
|
|
|
|
|
ImageOps.exif_transpose(images, in_place=True) |
|
image_sizes = [images.size] |
|
images = [images] |
|
elif isinstance(images, list): |
|
image_sizes = [] |
|
for i in images: |
|
ImageOps.exif_transpose(i, in_place=True) |
|
image_sizes.append(i.size) |
|
image_tensor = self.image_processor.process(images, image_processor, model_cfg)['pixel_values'] |
|
|
|
text = text.replace(DEFAULT_IMAGE_TOKEN, "").strip() |
|
if images is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in text: |
|
question = DEFAULT_IMAGE_TOKEN + "\n" + text |
|
else: |
|
question = text |
|
conv = conv_templates["instella"].copy() |
|
conv.append_message(conv.roles[0], question) |
|
conv.append_message(conv.roles[1], None) |
|
prompt_question = conv.get_prompt() |
|
|
|
|
|
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0) |
|
keywords = [conv.sep] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("|||IP_ADDRESS|||")] |
|
|
|
out = { |
|
"input_ids": input_ids, |
|
"stopping_criteria": [stopping_criteria], |
|
"eos_token_id": terminators, |
|
} |
|
if images is not None: |
|
out = { |
|
"image_tensor": image_tensor, |
|
"image_sizes": image_sizes, |
|
**out, |
|
} |
|
self.tokenizer = tokenizer |
|
return out |
|
|
|
def batch_encode(self, |
|
texts: List[TextInput] = None, |
|
images: List[ImageInput] = None, |
|
image_processor: CLIPImageProcessor = None, |
|
tokenizer: AutoTokenizer = None, |
|
model_cfg: dict = None, |
|
): |
|
|
|
if texts is None: |
|
raise ValueError("Text must be provided for batch encoding.") |
|
|
|
if images is None: |
|
images = [None] * len(text) |
|
|
|
assert isinstance(texts, list), "Since batch encoding happening, provide batch of texts in a list." |
|
|
|
assert len(texts) == len(images), "The number of texts and images must be equal." |
|
|
|
batch_outs = [] |
|
for txt, img in tqdm(zip(texts, images), total=len(texts), desc="Total Samples to encode"): |
|
batch_outs.append(self.encode(txt, img, image_processor, tokenizer, model_cfg)) |
|
|
|
return batch_outs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decode(self, output_ids: torch.Tensor)->str: |
|
return self.tokenizer.decode(output_ids[0, :], skip_special_tokens=True).strip() |
|
|
|
def batch_decode(self, output_ids_lst: List[torch.Tensor])->List[str]: |
|
raise NotImplementedError("Batch decode is not implemented for InstellaVLProcessor") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstellaVLProcessor.register_for_auto_class() |
|
|