init
Browse files- README.md +32 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- pytorch_model.bin +3 -0
- test.tsv +0 -0
- training.log +364 -0
README.md
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- flair
|
| 4 |
+
- token-classification
|
| 5 |
+
- sequence-tagger-model
|
| 6 |
+
language: en
|
| 7 |
+
widget:
|
| 8 |
+
- text: "12 sets of 2 minutes 38 minutes between each set"
|
| 9 |
+
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
7-class NER English model using [Flair TransformerWordEmbeddings - distilroberta-base](https://github.com/flairNLP/flair/).
|
| 13 |
+
|
| 14 |
+
| **tag** | **meaning** |
|
| 15 |
+
|---------------------------------|-----------|
|
| 16 |
+
| nb_rounds | Number of rounds |
|
| 17 |
+
| duration_br_sd | Duration btwn rounds in seconds |
|
| 18 |
+
| duration_br_min | Duration btwn rounds in minutes |
|
| 19 |
+
| duration_br_hr | Duration btwn rounds in hours |
|
| 20 |
+
| duration_wt_sd | workout duration in seconds |
|
| 21 |
+
| duration_wt_min | workout duration in minutes |
|
| 22 |
+
| duration_wt_hr | workout duration in hours |
|
| 23 |
+
---
|
| 24 |
+
The dataset was created manually (perfectible). Sentences example :
|
| 25 |
+
```
|
| 26 |
+
19 sets of 3 minutes 21 minutes between sets
|
| 27 |
+
start 7 sets of 32 seconds
|
| 28 |
+
create 13 sets of 26 seconds
|
| 29 |
+
init 8 series of 3 hours
|
| 30 |
+
2 sets of 30 seconds 35 minutes between each cycle
|
| 31 |
+
...
|
| 32 |
+
```
|
dev.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
loss.tsv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
+
1 15:37:11 0 0.0001 0.16075978090894327 0.0029305333737283945 0.9992 0.9992 0.9992 0.9992
|
| 3 |
+
2 15:39:39 0 0.0001 0.11129908844900666 0.0013541270745918155 0.9992 0.9992 0.9992 0.9992
|
| 4 |
+
3 15:42:09 1 0.0001 0.11176801912461394 0.0017125594895333052 0.9992 0.9992 0.9992 0.9992
|
| 5 |
+
4 15:44:39 2 0.0001 0.11077808575201452 0.0035813269205391407 0.9992 0.9992 0.9992 0.9992
|
| 6 |
+
5 15:47:07 0 0.0001 0.10987376058836824 0.0010140719823539257 0.9995 0.9995 0.9995 0.9995
|
| 7 |
+
6 15:49:35 1 0.0001 0.10985530377211841 0.0014548080507665873 0.9993 0.9993 0.9993 0.9993
|
| 8 |
+
7 15:52:04 2 0.0001 0.11081814550640288 0.0011286081280559301 0.9994 0.9994 0.9994 0.9994
|
| 9 |
+
8 15:54:33 0 0.0001 0.1101565688396648 0.0014515728689730167 0.9995 0.9995 0.9995 0.9995
|
| 10 |
+
9 15:57:02 1 0.0001 0.11015787282151847 0.0028099738992750645 0.9994 0.9994 0.9994 0.9994
|
| 11 |
+
10 15:59:31 2 0.0001 0.1096125644685161 0.004609304014593363 0.9993 0.9993 0.9993 0.9993
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6178fe753987ccc16cf513c1d15ab22cd01d29eadcfa580549d99aaa771b7840
|
| 3 |
+
size 338076137
|
test.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training.log
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2021-11-17 15:34:49,923 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2021-11-17 15:34:49,924 Model: "SequenceTagger(
|
| 3 |
+
(embeddings): TransformerWordEmbeddings(
|
| 4 |
+
(model): RobertaModel(
|
| 5 |
+
(embeddings): RobertaEmbeddings(
|
| 6 |
+
(word_embeddings): Embedding(50265, 768, padding_idx=1)
|
| 7 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
| 8 |
+
(token_type_embeddings): Embedding(1, 768)
|
| 9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 11 |
+
)
|
| 12 |
+
(encoder): RobertaEncoder(
|
| 13 |
+
(layer): ModuleList(
|
| 14 |
+
(0): RobertaLayer(
|
| 15 |
+
(attention): RobertaAttention(
|
| 16 |
+
(self): RobertaSelfAttention(
|
| 17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 21 |
+
)
|
| 22 |
+
(output): RobertaSelfOutput(
|
| 23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
(intermediate): RobertaIntermediate(
|
| 29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 30 |
+
)
|
| 31 |
+
(output): RobertaOutput(
|
| 32 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 33 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
(1): RobertaLayer(
|
| 38 |
+
(attention): RobertaAttention(
|
| 39 |
+
(self): RobertaSelfAttention(
|
| 40 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 41 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 42 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 44 |
+
)
|
| 45 |
+
(output): RobertaSelfOutput(
|
| 46 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 47 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 49 |
+
)
|
| 50 |
+
)
|
| 51 |
+
(intermediate): RobertaIntermediate(
|
| 52 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 53 |
+
)
|
| 54 |
+
(output): RobertaOutput(
|
| 55 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 56 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 58 |
+
)
|
| 59 |
+
)
|
| 60 |
+
(2): RobertaLayer(
|
| 61 |
+
(attention): RobertaAttention(
|
| 62 |
+
(self): RobertaSelfAttention(
|
| 63 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 64 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 65 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 67 |
+
)
|
| 68 |
+
(output): RobertaSelfOutput(
|
| 69 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 70 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 72 |
+
)
|
| 73 |
+
)
|
| 74 |
+
(intermediate): RobertaIntermediate(
|
| 75 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 76 |
+
)
|
| 77 |
+
(output): RobertaOutput(
|
| 78 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 79 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 81 |
+
)
|
| 82 |
+
)
|
| 83 |
+
(3): RobertaLayer(
|
| 84 |
+
(attention): RobertaAttention(
|
| 85 |
+
(self): RobertaSelfAttention(
|
| 86 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 87 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 88 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 90 |
+
)
|
| 91 |
+
(output): RobertaSelfOutput(
|
| 92 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 93 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 95 |
+
)
|
| 96 |
+
)
|
| 97 |
+
(intermediate): RobertaIntermediate(
|
| 98 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 99 |
+
)
|
| 100 |
+
(output): RobertaOutput(
|
| 101 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 102 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 104 |
+
)
|
| 105 |
+
)
|
| 106 |
+
(4): RobertaLayer(
|
| 107 |
+
(attention): RobertaAttention(
|
| 108 |
+
(self): RobertaSelfAttention(
|
| 109 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 110 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 111 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 113 |
+
)
|
| 114 |
+
(output): RobertaSelfOutput(
|
| 115 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 116 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 118 |
+
)
|
| 119 |
+
)
|
| 120 |
+
(intermediate): RobertaIntermediate(
|
| 121 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 122 |
+
)
|
| 123 |
+
(output): RobertaOutput(
|
| 124 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 125 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 127 |
+
)
|
| 128 |
+
)
|
| 129 |
+
(5): RobertaLayer(
|
| 130 |
+
(attention): RobertaAttention(
|
| 131 |
+
(self): RobertaSelfAttention(
|
| 132 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 133 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 134 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 136 |
+
)
|
| 137 |
+
(output): RobertaSelfOutput(
|
| 138 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 139 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
(intermediate): RobertaIntermediate(
|
| 144 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 145 |
+
)
|
| 146 |
+
(output): RobertaOutput(
|
| 147 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 148 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 150 |
+
)
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
)
|
| 154 |
+
(pooler): RobertaPooler(
|
| 155 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 156 |
+
(activation): Tanh()
|
| 157 |
+
)
|
| 158 |
+
)
|
| 159 |
+
)
|
| 160 |
+
(word_dropout): WordDropout(p=0.05)
|
| 161 |
+
(locked_dropout): LockedDropout(p=0.5)
|
| 162 |
+
(embedding2nn): Linear(in_features=1536, out_features=1536, bias=True)
|
| 163 |
+
(linear): Linear(in_features=1536, out_features=16, bias=True)
|
| 164 |
+
(beta): 1.0
|
| 165 |
+
(weights): None
|
| 166 |
+
(weight_tensor) None
|
| 167 |
+
)"
|
| 168 |
+
2021-11-17 15:34:49,924 ----------------------------------------------------------------------------------------------------
|
| 169 |
+
2021-11-17 15:34:49,925 Corpus: "Corpus: 56700 train + 6300 dev + 7000 test sentences"
|
| 170 |
+
2021-11-17 15:34:49,925 ----------------------------------------------------------------------------------------------------
|
| 171 |
+
2021-11-17 15:34:49,926 Parameters:
|
| 172 |
+
2021-11-17 15:34:49,926 - learning_rate: "5e-05"
|
| 173 |
+
2021-11-17 15:34:49,926 - mini_batch_size: "64"
|
| 174 |
+
2021-11-17 15:34:49,926 - patience: "3"
|
| 175 |
+
2021-11-17 15:34:49,927 - anneal_factor: "0.5"
|
| 176 |
+
2021-11-17 15:34:49,927 - max_epochs: "10"
|
| 177 |
+
2021-11-17 15:34:49,927 - shuffle: "True"
|
| 178 |
+
2021-11-17 15:34:49,928 - train_with_dev: "False"
|
| 179 |
+
2021-11-17 15:34:49,928 - batch_growth_annealing: "False"
|
| 180 |
+
2021-11-17 15:34:49,928 ----------------------------------------------------------------------------------------------------
|
| 181 |
+
2021-11-17 15:34:49,929 Model training base path: "training/flair_ner/17112021_152905"
|
| 182 |
+
2021-11-17 15:34:49,930 ----------------------------------------------------------------------------------------------------
|
| 183 |
+
2021-11-17 15:34:49,930 Device: cuda
|
| 184 |
+
2021-11-17 15:34:49,931 ----------------------------------------------------------------------------------------------------
|
| 185 |
+
2021-11-17 15:34:49,931 Embeddings storage mode: cpu
|
| 186 |
+
2021-11-17 15:34:49,933 ----------------------------------------------------------------------------------------------------
|
| 187 |
+
2021-11-17 15:35:02,874 epoch 1 - iter 88/886 - loss 0.50644155 - samples/sec: 435.49 - lr: 0.000050
|
| 188 |
+
2021-11-17 15:35:15,686 epoch 1 - iter 176/886 - loss 0.32420832 - samples/sec: 439.83 - lr: 0.000050
|
| 189 |
+
2021-11-17 15:35:28,472 epoch 1 - iter 264/886 - loss 0.25984089 - samples/sec: 440.71 - lr: 0.000050
|
| 190 |
+
2021-11-17 15:35:41,245 epoch 1 - iter 352/886 - loss 0.22670251 - samples/sec: 441.16 - lr: 0.000050
|
| 191 |
+
2021-11-17 15:35:54,419 epoch 1 - iter 440/886 - loss 0.20579280 - samples/sec: 427.72 - lr: 0.000050
|
| 192 |
+
2021-11-17 15:36:07,202 epoch 1 - iter 528/886 - loss 0.19081105 - samples/sec: 440.90 - lr: 0.000050
|
| 193 |
+
2021-11-17 15:36:19,841 epoch 1 - iter 616/886 - loss 0.18055071 - samples/sec: 445.85 - lr: 0.000050
|
| 194 |
+
2021-11-17 15:36:32,361 epoch 1 - iter 704/886 - loss 0.17219026 - samples/sec: 450.10 - lr: 0.000050
|
| 195 |
+
2021-11-17 15:36:45,001 epoch 1 - iter 792/886 - loss 0.16603222 - samples/sec: 445.79 - lr: 0.000050
|
| 196 |
+
2021-11-17 15:36:57,735 epoch 1 - iter 880/886 - loss 0.16102375 - samples/sec: 442.72 - lr: 0.000050
|
| 197 |
+
2021-11-17 15:36:58,592 ----------------------------------------------------------------------------------------------------
|
| 198 |
+
2021-11-17 15:36:58,593 EPOCH 1 done: loss 0.1608 - lr 0.0000500
|
| 199 |
+
2021-11-17 15:37:11,841 DEV : loss 0.0029305333737283945 - f1-score (micro avg) 0.9992
|
| 200 |
+
2021-11-17 15:37:11,924 BAD EPOCHS (no improvement): 0
|
| 201 |
+
2021-11-17 15:37:11,924 saving best model
|
| 202 |
+
2021-11-17 15:37:12,293 ----------------------------------------------------------------------------------------------------
|
| 203 |
+
2021-11-17 15:37:25,475 epoch 2 - iter 88/886 - loss 0.11026321 - samples/sec: 427.67 - lr: 0.000050
|
| 204 |
+
2021-11-17 15:37:38,477 epoch 2 - iter 176/886 - loss 0.11169786 - samples/sec: 433.62 - lr: 0.000050
|
| 205 |
+
2021-11-17 15:37:51,386 epoch 2 - iter 264/886 - loss 0.11076006 - samples/sec: 436.59 - lr: 0.000050
|
| 206 |
+
2021-11-17 15:38:04,316 epoch 2 - iter 352/886 - loss 0.11026275 - samples/sec: 435.86 - lr: 0.000050
|
| 207 |
+
2021-11-17 15:38:17,224 epoch 2 - iter 440/886 - loss 0.11058185 - samples/sec: 436.60 - lr: 0.000050
|
| 208 |
+
2021-11-17 15:38:30,171 epoch 2 - iter 528/886 - loss 0.11105888 - samples/sec: 435.31 - lr: 0.000050
|
| 209 |
+
2021-11-17 15:38:43,248 epoch 2 - iter 616/886 - loss 0.11093445 - samples/sec: 431.17 - lr: 0.000050
|
| 210 |
+
2021-11-17 15:38:56,137 epoch 2 - iter 704/886 - loss 0.11079835 - samples/sec: 437.26 - lr: 0.000050
|
| 211 |
+
2021-11-17 15:39:09,395 epoch 2 - iter 792/886 - loss 0.11148766 - samples/sec: 425.17 - lr: 0.000050
|
| 212 |
+
2021-11-17 15:39:22,450 epoch 2 - iter 880/886 - loss 0.11140394 - samples/sec: 431.78 - lr: 0.000050
|
| 213 |
+
2021-11-17 15:39:23,318 ----------------------------------------------------------------------------------------------------
|
| 214 |
+
2021-11-17 15:39:23,318 EPOCH 2 done: loss 0.1113 - lr 0.0000500
|
| 215 |
+
2021-11-17 15:39:39,217 DEV : loss 0.0013541270745918155 - f1-score (micro avg) 0.9992
|
| 216 |
+
2021-11-17 15:39:39,304 BAD EPOCHS (no improvement): 0
|
| 217 |
+
2021-11-17 15:39:39,305 ----------------------------------------------------------------------------------------------------
|
| 218 |
+
2021-11-17 15:39:52,661 epoch 3 - iter 88/886 - loss 0.10886323 - samples/sec: 422.03 - lr: 0.000050
|
| 219 |
+
2021-11-17 15:40:05,912 epoch 3 - iter 176/886 - loss 0.10787832 - samples/sec: 425.49 - lr: 0.000050
|
| 220 |
+
2021-11-17 15:40:19,212 epoch 3 - iter 264/886 - loss 0.11035842 - samples/sec: 423.74 - lr: 0.000050
|
| 221 |
+
2021-11-17 15:40:32,505 epoch 3 - iter 352/886 - loss 0.11104986 - samples/sec: 424.15 - lr: 0.000050
|
| 222 |
+
2021-11-17 15:40:45,782 epoch 3 - iter 440/886 - loss 0.11091610 - samples/sec: 424.49 - lr: 0.000050
|
| 223 |
+
2021-11-17 15:40:59,163 epoch 3 - iter 528/886 - loss 0.11110444 - samples/sec: 421.17 - lr: 0.000050
|
| 224 |
+
2021-11-17 15:41:12,392 epoch 3 - iter 616/886 - loss 0.11146392 - samples/sec: 426.23 - lr: 0.000050
|
| 225 |
+
2021-11-17 15:41:25,673 epoch 3 - iter 704/886 - loss 0.11154272 - samples/sec: 424.34 - lr: 0.000050
|
| 226 |
+
2021-11-17 15:41:38,940 epoch 3 - iter 792/886 - loss 0.11160924 - samples/sec: 424.88 - lr: 0.000050
|
| 227 |
+
2021-11-17 15:41:52,243 epoch 3 - iter 880/886 - loss 0.11176415 - samples/sec: 423.61 - lr: 0.000050
|
| 228 |
+
2021-11-17 15:41:53,139 ----------------------------------------------------------------------------------------------------
|
| 229 |
+
2021-11-17 15:41:53,141 EPOCH 3 done: loss 0.1118 - lr 0.0000500
|
| 230 |
+
2021-11-17 15:42:09,290 DEV : loss 0.0017125594895333052 - f1-score (micro avg) 0.9992
|
| 231 |
+
2021-11-17 15:42:09,373 BAD EPOCHS (no improvement): 1
|
| 232 |
+
2021-11-17 15:42:09,374 ----------------------------------------------------------------------------------------------------
|
| 233 |
+
2021-11-17 15:42:22,858 epoch 4 - iter 88/886 - loss 0.10978185 - samples/sec: 418.00 - lr: 0.000050
|
| 234 |
+
2021-11-17 15:42:36,074 epoch 4 - iter 176/886 - loss 0.10973528 - samples/sec: 426.43 - lr: 0.000050
|
| 235 |
+
2021-11-17 15:42:49,423 epoch 4 - iter 264/886 - loss 0.11060583 - samples/sec: 422.19 - lr: 0.000050
|
| 236 |
+
2021-11-17 15:43:02,798 epoch 4 - iter 352/886 - loss 0.11082956 - samples/sec: 421.55 - lr: 0.000050
|
| 237 |
+
2021-11-17 15:43:16,118 epoch 4 - iter 440/886 - loss 0.11054231 - samples/sec: 423.16 - lr: 0.000050
|
| 238 |
+
2021-11-17 15:43:29,471 epoch 4 - iter 528/886 - loss 0.11108359 - samples/sec: 422.07 - lr: 0.000050
|
| 239 |
+
2021-11-17 15:43:42,869 epoch 4 - iter 616/886 - loss 0.11117851 - samples/sec: 420.64 - lr: 0.000050
|
| 240 |
+
2021-11-17 15:43:56,526 epoch 4 - iter 704/886 - loss 0.11137181 - samples/sec: 412.67 - lr: 0.000050
|
| 241 |
+
2021-11-17 15:44:10,054 epoch 4 - iter 792/886 - loss 0.11142306 - samples/sec: 416.60 - lr: 0.000050
|
| 242 |
+
2021-11-17 15:44:23,264 epoch 4 - iter 880/886 - loss 0.11088636 - samples/sec: 426.62 - lr: 0.000050
|
| 243 |
+
2021-11-17 15:44:24,146 ----------------------------------------------------------------------------------------------------
|
| 244 |
+
2021-11-17 15:44:24,146 EPOCH 4 done: loss 0.1108 - lr 0.0000500
|
| 245 |
+
2021-11-17 15:44:39,706 DEV : loss 0.0035813269205391407 - f1-score (micro avg) 0.9992
|
| 246 |
+
2021-11-17 15:44:39,791 BAD EPOCHS (no improvement): 2
|
| 247 |
+
2021-11-17 15:44:39,791 ----------------------------------------------------------------------------------------------------
|
| 248 |
+
2021-11-17 15:44:53,041 epoch 5 - iter 88/886 - loss 0.10802392 - samples/sec: 425.46 - lr: 0.000050
|
| 249 |
+
2021-11-17 15:45:06,325 epoch 5 - iter 176/886 - loss 0.10760262 - samples/sec: 424.24 - lr: 0.000050
|
| 250 |
+
2021-11-17 15:45:19,569 epoch 5 - iter 264/886 - loss 0.10806256 - samples/sec: 425.73 - lr: 0.000050
|
| 251 |
+
2021-11-17 15:45:32,761 epoch 5 - iter 352/886 - loss 0.10865681 - samples/sec: 427.42 - lr: 0.000050
|
| 252 |
+
2021-11-17 15:45:45,855 epoch 5 - iter 440/886 - loss 0.10912184 - samples/sec: 430.61 - lr: 0.000050
|
| 253 |
+
2021-11-17 15:45:59,034 epoch 5 - iter 528/886 - loss 0.10891177 - samples/sec: 427.65 - lr: 0.000050
|
| 254 |
+
2021-11-17 15:46:12,303 epoch 5 - iter 616/886 - loss 0.10963959 - samples/sec: 424.90 - lr: 0.000050
|
| 255 |
+
2021-11-17 15:46:25,367 epoch 5 - iter 704/886 - loss 0.10977588 - samples/sec: 431.42 - lr: 0.000050
|
| 256 |
+
2021-11-17 15:46:38,535 epoch 5 - iter 792/886 - loss 0.10983991 - samples/sec: 427.99 - lr: 0.000050
|
| 257 |
+
2021-11-17 15:46:52,036 epoch 5 - iter 880/886 - loss 0.10983081 - samples/sec: 417.44 - lr: 0.000050
|
| 258 |
+
2021-11-17 15:46:52,981 ----------------------------------------------------------------------------------------------------
|
| 259 |
+
2021-11-17 15:46:52,981 EPOCH 5 done: loss 0.1099 - lr 0.0000500
|
| 260 |
+
2021-11-17 15:47:07,506 DEV : loss 0.0010140719823539257 - f1-score (micro avg) 0.9995
|
| 261 |
+
2021-11-17 15:47:07,591 BAD EPOCHS (no improvement): 0
|
| 262 |
+
2021-11-17 15:47:07,592 saving best model
|
| 263 |
+
2021-11-17 15:47:08,183 ----------------------------------------------------------------------------------------------------
|
| 264 |
+
2021-11-17 15:47:21,511 epoch 6 - iter 88/886 - loss 0.10567650 - samples/sec: 422.90 - lr: 0.000050
|
| 265 |
+
2021-11-17 15:47:34,509 epoch 6 - iter 176/886 - loss 0.10887869 - samples/sec: 433.61 - lr: 0.000050
|
| 266 |
+
2021-11-17 15:47:47,528 epoch 6 - iter 264/886 - loss 0.10842350 - samples/sec: 432.88 - lr: 0.000050
|
| 267 |
+
2021-11-17 15:48:00,526 epoch 6 - iter 352/886 - loss 0.10983462 - samples/sec: 433.80 - lr: 0.000050
|
| 268 |
+
2021-11-17 15:48:13,643 epoch 6 - iter 440/886 - loss 0.10883770 - samples/sec: 429.63 - lr: 0.000050
|
| 269 |
+
2021-11-17 15:48:26,632 epoch 6 - iter 528/886 - loss 0.10926475 - samples/sec: 434.11 - lr: 0.000050
|
| 270 |
+
2021-11-17 15:48:39,864 epoch 6 - iter 616/886 - loss 0.10987226 - samples/sec: 425.93 - lr: 0.000050
|
| 271 |
+
2021-11-17 15:48:52,954 epoch 6 - iter 704/886 - loss 0.11003466 - samples/sec: 430.54 - lr: 0.000050
|
| 272 |
+
2021-11-17 15:49:06,114 epoch 6 - iter 792/886 - loss 0.11000339 - samples/sec: 428.26 - lr: 0.000050
|
| 273 |
+
2021-11-17 15:49:19,283 epoch 6 - iter 880/886 - loss 0.10986999 - samples/sec: 427.94 - lr: 0.000050
|
| 274 |
+
2021-11-17 15:49:20,160 ----------------------------------------------------------------------------------------------------
|
| 275 |
+
2021-11-17 15:49:20,161 EPOCH 6 done: loss 0.1099 - lr 0.0000500
|
| 276 |
+
2021-11-17 15:49:35,569 DEV : loss 0.0014548080507665873 - f1-score (micro avg) 0.9993
|
| 277 |
+
2021-11-17 15:49:35,652 BAD EPOCHS (no improvement): 1
|
| 278 |
+
2021-11-17 15:49:35,653 ----------------------------------------------------------------------------------------------------
|
| 279 |
+
2021-11-17 15:49:48,878 epoch 7 - iter 88/886 - loss 0.10951206 - samples/sec: 426.18 - lr: 0.000050
|
| 280 |
+
2021-11-17 15:50:01,971 epoch 7 - iter 176/886 - loss 0.11032338 - samples/sec: 430.47 - lr: 0.000050
|
| 281 |
+
2021-11-17 15:50:15,172 epoch 7 - iter 264/886 - loss 0.11045747 - samples/sec: 426.91 - lr: 0.000050
|
| 282 |
+
2021-11-17 15:50:28,317 epoch 7 - iter 352/886 - loss 0.11071942 - samples/sec: 428.73 - lr: 0.000050
|
| 283 |
+
2021-11-17 15:50:41,502 epoch 7 - iter 440/886 - loss 0.11000396 - samples/sec: 427.62 - lr: 0.000050
|
| 284 |
+
2021-11-17 15:50:54,735 epoch 7 - iter 528/886 - loss 0.11036286 - samples/sec: 425.91 - lr: 0.000050
|
| 285 |
+
2021-11-17 15:51:08,179 epoch 7 - iter 616/886 - loss 0.11044996 - samples/sec: 419.40 - lr: 0.000050
|
| 286 |
+
2021-11-17 15:51:21,435 epoch 7 - iter 704/886 - loss 0.11062300 - samples/sec: 425.15 - lr: 0.000050
|
| 287 |
+
2021-11-17 15:51:34,569 epoch 7 - iter 792/886 - loss 0.11050441 - samples/sec: 429.10 - lr: 0.000050
|
| 288 |
+
2021-11-17 15:51:47,616 epoch 7 - iter 880/886 - loss 0.11081751 - samples/sec: 432.02 - lr: 0.000050
|
| 289 |
+
2021-11-17 15:51:48,504 ----------------------------------------------------------------------------------------------------
|
| 290 |
+
2021-11-17 15:51:48,504 EPOCH 7 done: loss 0.1108 - lr 0.0000500
|
| 291 |
+
2021-11-17 15:52:04,138 DEV : loss 0.0011286081280559301 - f1-score (micro avg) 0.9994
|
| 292 |
+
2021-11-17 15:52:04,221 BAD EPOCHS (no improvement): 2
|
| 293 |
+
2021-11-17 15:52:04,221 ----------------------------------------------------------------------------------------------------
|
| 294 |
+
2021-11-17 15:52:17,523 epoch 8 - iter 88/886 - loss 0.10894525 - samples/sec: 423.73 - lr: 0.000050
|
| 295 |
+
2021-11-17 15:52:30,625 epoch 8 - iter 176/886 - loss 0.11013192 - samples/sec: 430.14 - lr: 0.000050
|
| 296 |
+
2021-11-17 15:52:43,834 epoch 8 - iter 264/886 - loss 0.11008158 - samples/sec: 426.69 - lr: 0.000050
|
| 297 |
+
2021-11-17 15:52:57,028 epoch 8 - iter 352/886 - loss 0.11060585 - samples/sec: 427.15 - lr: 0.000050
|
| 298 |
+
2021-11-17 15:53:10,298 epoch 8 - iter 440/886 - loss 0.11058677 - samples/sec: 424.70 - lr: 0.000050
|
| 299 |
+
2021-11-17 15:53:23,599 epoch 8 - iter 528/886 - loss 0.11039821 - samples/sec: 423.70 - lr: 0.000050
|
| 300 |
+
2021-11-17 15:53:36,716 epoch 8 - iter 616/886 - loss 0.11030582 - samples/sec: 429.67 - lr: 0.000050
|
| 301 |
+
2021-11-17 15:53:49,982 epoch 8 - iter 704/886 - loss 0.10977816 - samples/sec: 424.83 - lr: 0.000050
|
| 302 |
+
2021-11-17 15:54:03,181 epoch 8 - iter 792/886 - loss 0.11012337 - samples/sec: 426.98 - lr: 0.000050
|
| 303 |
+
2021-11-17 15:54:16,462 epoch 8 - iter 880/886 - loss 0.11017103 - samples/sec: 424.37 - lr: 0.000050
|
| 304 |
+
2021-11-17 15:54:17,329 ----------------------------------------------------------------------------------------------------
|
| 305 |
+
2021-11-17 15:54:17,329 EPOCH 8 done: loss 0.1102 - lr 0.0000500
|
| 306 |
+
2021-11-17 15:54:32,948 DEV : loss 0.0014515728689730167 - f1-score (micro avg) 0.9995
|
| 307 |
+
2021-11-17 15:54:33,031 BAD EPOCHS (no improvement): 0
|
| 308 |
+
2021-11-17 15:54:33,032 saving best model
|
| 309 |
+
2021-11-17 15:54:33,637 ----------------------------------------------------------------------------------------------------
|
| 310 |
+
2021-11-17 15:54:46,858 epoch 9 - iter 88/886 - loss 0.10922566 - samples/sec: 426.35 - lr: 0.000050
|
| 311 |
+
2021-11-17 15:54:59,965 epoch 9 - iter 176/886 - loss 0.11082640 - samples/sec: 429.99 - lr: 0.000050
|
| 312 |
+
2021-11-17 15:55:13,176 epoch 9 - iter 264/886 - loss 0.11164660 - samples/sec: 426.60 - lr: 0.000050
|
| 313 |
+
2021-11-17 15:55:26,289 epoch 9 - iter 352/886 - loss 0.11113663 - samples/sec: 429.99 - lr: 0.000050
|
| 314 |
+
2021-11-17 15:55:40,047 epoch 9 - iter 440/886 - loss 0.11075153 - samples/sec: 409.63 - lr: 0.000050
|
| 315 |
+
2021-11-17 15:55:53,772 epoch 9 - iter 528/886 - loss 0.11070955 - samples/sec: 410.63 - lr: 0.000050
|
| 316 |
+
2021-11-17 15:56:07,050 epoch 9 - iter 616/886 - loss 0.11027549 - samples/sec: 424.44 - lr: 0.000050
|
| 317 |
+
2021-11-17 15:56:20,322 epoch 9 - iter 704/886 - loss 0.11003220 - samples/sec: 424.64 - lr: 0.000050
|
| 318 |
+
2021-11-17 15:56:33,497 epoch 9 - iter 792/886 - loss 0.10976900 - samples/sec: 427.78 - lr: 0.000050
|
| 319 |
+
2021-11-17 15:56:46,751 epoch 9 - iter 880/886 - loss 0.11015739 - samples/sec: 425.22 - lr: 0.000050
|
| 320 |
+
2021-11-17 15:56:47,659 ----------------------------------------------------------------------------------------------------
|
| 321 |
+
2021-11-17 15:56:47,660 EPOCH 9 done: loss 0.1102 - lr 0.0000500
|
| 322 |
+
2021-11-17 15:57:02,117 DEV : loss 0.0028099738992750645 - f1-score (micro avg) 0.9994
|
| 323 |
+
2021-11-17 15:57:02,205 BAD EPOCHS (no improvement): 1
|
| 324 |
+
2021-11-17 15:57:02,206 ----------------------------------------------------------------------------------------------------
|
| 325 |
+
2021-11-17 15:57:15,740 epoch 10 - iter 88/886 - loss 0.11323596 - samples/sec: 416.50 - lr: 0.000050
|
| 326 |
+
2021-11-17 15:57:28,942 epoch 10 - iter 176/886 - loss 0.11324876 - samples/sec: 426.89 - lr: 0.000050
|
| 327 |
+
2021-11-17 15:57:42,141 epoch 10 - iter 264/886 - loss 0.11189004 - samples/sec: 426.98 - lr: 0.000050
|
| 328 |
+
2021-11-17 15:57:55,416 epoch 10 - iter 352/886 - loss 0.11062028 - samples/sec: 424.72 - lr: 0.000050
|
| 329 |
+
2021-11-17 15:58:08,673 epoch 10 - iter 440/886 - loss 0.10959000 - samples/sec: 425.11 - lr: 0.000050
|
| 330 |
+
2021-11-17 15:58:21,918 epoch 10 - iter 528/886 - loss 0.10964689 - samples/sec: 425.52 - lr: 0.000050
|
| 331 |
+
2021-11-17 15:58:35,102 epoch 10 - iter 616/886 - loss 0.11011373 - samples/sec: 427.66 - lr: 0.000050
|
| 332 |
+
2021-11-17 15:58:48,156 epoch 10 - iter 704/886 - loss 0.10975773 - samples/sec: 431.74 - lr: 0.000050
|
| 333 |
+
2021-11-17 15:59:01,225 epoch 10 - iter 792/886 - loss 0.10955614 - samples/sec: 431.43 - lr: 0.000050
|
| 334 |
+
2021-11-17 15:59:14,205 epoch 10 - iter 880/886 - loss 0.10966756 - samples/sec: 434.19 - lr: 0.000050
|
| 335 |
+
2021-11-17 15:59:15,113 ----------------------------------------------------------------------------------------------------
|
| 336 |
+
2021-11-17 15:59:15,114 EPOCH 10 done: loss 0.1096 - lr 0.0000500
|
| 337 |
+
2021-11-17 15:59:30,962 DEV : loss 0.004609304014593363 - f1-score (micro avg) 0.9993
|
| 338 |
+
2021-11-17 15:59:31,047 BAD EPOCHS (no improvement): 2
|
| 339 |
+
2021-11-17 15:59:31,418 ----------------------------------------------------------------------------------------------------
|
| 340 |
+
2021-11-17 15:59:31,419 loading file training/flair_ner/17112021_152905/best-model.pt
|
| 341 |
+
2021-11-17 15:59:49,424 0.9993 0.9993 0.9993 0.9993
|
| 342 |
+
2021-11-17 15:59:49,425
|
| 343 |
+
Results:
|
| 344 |
+
- F-score (micro) 0.9993
|
| 345 |
+
- F-score (macro) 0.9984
|
| 346 |
+
- Accuracy 0.9993
|
| 347 |
+
|
| 348 |
+
By class:
|
| 349 |
+
precision recall f1-score support
|
| 350 |
+
|
| 351 |
+
nb_rounds 0.9988 0.9991 0.9990 6882
|
| 352 |
+
duration_br_min 0.9997 0.9979 0.9988 3303
|
| 353 |
+
duration_wt_sd 1.0000 1.0000 1.0000 3251
|
| 354 |
+
duration_wt_min 1.0000 1.0000 1.0000 2698
|
| 355 |
+
duration_br_sd 0.9995 0.9995 0.9995 2003
|
| 356 |
+
duration_wt_hr 1.0000 1.0000 1.0000 1068
|
| 357 |
+
duration_br_hr 0.9830 1.0000 0.9914 231
|
| 358 |
+
|
| 359 |
+
micro avg 0.9993 0.9993 0.9993 19436
|
| 360 |
+
macro avg 0.9973 0.9995 0.9984 19436
|
| 361 |
+
weighted avg 0.9993 0.9993 0.9993 19436
|
| 362 |
+
samples avg 0.9993 0.9993 0.9993 19436
|
| 363 |
+
|
| 364 |
+
2021-11-17 15:59:49,425 ----------------------------------------------------------------------------------------------------
|