Delete app.py
Browse files
app.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
|
4 |
-
# Load model and tokenizer
|
5 |
-
model_id = "ananddey/gemma-3-ad-finetuned"
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
8 |
-
|
9 |
-
def generate_text(prompt, max_length=100, temperature=0.7):
|
10 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
11 |
-
outputs = model.generate(
|
12 |
-
inputs.input_ids,
|
13 |
-
max_length=max_length,
|
14 |
-
temperature=temperature,
|
15 |
-
do_sample=True,
|
16 |
-
)
|
17 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
-
|
19 |
-
# Create Gradio interface
|
20 |
-
demo = gr.Interface(
|
21 |
-
fn=generate_text,
|
22 |
-
inputs=[
|
23 |
-
gr.Textbox(lines=5, placeholder="Enter your prompt here..."),
|
24 |
-
gr.Slider(minimum=10, maximum=500, value=100, label="Max Length"),
|
25 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
|
26 |
-
],
|
27 |
-
outputs="text"
|
28 |
-
)
|
29 |
-
|
30 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|