File size: 1,891 Bytes
f84e7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
datasets:
- indonlu
metrics:
- accuracy
model-index:
- name: indobert-base-uncased-finetuned-indonlu-smsa
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: indonlu
      type: indonlu
      config: smsa
      split: validation
      args: smsa
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9214285714285714
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indobert-base-uncased-finetuned-indonlu-smsa

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2232
- Accuracy: 0.9214

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 344  | 0.6858          | 0.7063   |
| 0.8162        | 2.0   | 688  | 0.3510          | 0.8611   |
| 0.3579        | 3.0   | 1032 | 0.2232          | 0.9214   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1