Upload model
Browse files- README.md +199 -0
- config.json +19 -0
- model.py +608 -0
- model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LightGPTHuggingFaceModel"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "model.LightGPTHuggingFaceConfig",
|
| 7 |
+
"AutoModel": "model.LightGPTHuggingFaceModel"
|
| 8 |
+
},
|
| 9 |
+
"dropout": 0.1,
|
| 10 |
+
"embedding_dimensions": 1024,
|
| 11 |
+
"feed_forward_ratio": 4,
|
| 12 |
+
"model_type": "lightgpt",
|
| 13 |
+
"num_heads": 16,
|
| 14 |
+
"num_layers": 24,
|
| 15 |
+
"padding_index": -100,
|
| 16 |
+
"torch_dtype": "float32",
|
| 17 |
+
"transformers_version": "4.49.0",
|
| 18 |
+
"vocabulary_size": 50257
|
| 19 |
+
}
|
model.py
ADDED
|
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import sqrt
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from functools import partial, cached_property
|
| 4 |
+
from typing import Iterator, Self
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from torch import Tensor
|
| 9 |
+
from torch.nn import (
|
| 10 |
+
Module,
|
| 11 |
+
ModuleList,
|
| 12 |
+
Sequential,
|
| 13 |
+
Embedding,
|
| 14 |
+
MultiheadAttention,
|
| 15 |
+
Linear,
|
| 16 |
+
SiLU,
|
| 17 |
+
RMSNorm,
|
| 18 |
+
Dropout1d,
|
| 19 |
+
CrossEntropyLoss,
|
| 20 |
+
Parameter,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
from torch.nn.functional import softmax, log_softmax
|
| 24 |
+
from torch.nn.utils.parametrize import register_parametrization, remove_parametrizations
|
| 25 |
+
from torch.utils.checkpoint import checkpoint as torch_checkpoint
|
| 26 |
+
|
| 27 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class LightGPT(Module):
|
| 31 |
+
"""A generative pretrained transformer with no positional embeddings."""
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
vocabulary_size: int,
|
| 36 |
+
embedding_dimensions: int,
|
| 37 |
+
num_heads: int,
|
| 38 |
+
num_layers: int,
|
| 39 |
+
feed_forward_ratio: int,
|
| 40 |
+
dropout: float,
|
| 41 |
+
padding_index: int,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
|
| 45 |
+
if vocabulary_size <= 0:
|
| 46 |
+
raise ValueError(
|
| 47 |
+
f"Vocabulary size must be greater than 0, {vocabulary_size} given."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if num_layers <= 0:
|
| 51 |
+
raise ValueError(f"Num layers must be greater than 0, {num_layers} given.")
|
| 52 |
+
|
| 53 |
+
if feed_forward_ratio not in {1, 2, 4}:
|
| 54 |
+
raise ValueError("Feed-forward ratio must be either 1, 2, or 4.")
|
| 55 |
+
|
| 56 |
+
token_embeddings = Embedding(
|
| 57 |
+
vocabulary_size, embedding_dimensions, padding_idx=padding_index
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
output_layer = Linear(embedding_dimensions, vocabulary_size, bias=False)
|
| 61 |
+
|
| 62 |
+
output_layer.weight = token_embeddings.weight # Tie weights
|
| 63 |
+
|
| 64 |
+
self.token_embeddings = token_embeddings
|
| 65 |
+
|
| 66 |
+
self.body = ModuleList(
|
| 67 |
+
[
|
| 68 |
+
CausalSelfAttentionBlock(
|
| 69 |
+
embedding_dimensions,
|
| 70 |
+
num_heads,
|
| 71 |
+
feed_forward_ratio,
|
| 72 |
+
dropout,
|
| 73 |
+
)
|
| 74 |
+
for _ in range(num_layers)
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.checkpoint = lambda layer, x, attention_mask: layer(x, attention_mask)
|
| 79 |
+
|
| 80 |
+
self.output_norm = RMSNorm(embedding_dimensions)
|
| 81 |
+
self.output_layer = output_layer
|
| 82 |
+
|
| 83 |
+
self.loss_function = CrossEntropyLoss(ignore_index=padding_index)
|
| 84 |
+
|
| 85 |
+
self.vocabulary_size = vocabulary_size
|
| 86 |
+
|
| 87 |
+
@cached_property
|
| 88 |
+
def num_trainable_params(self) -> int:
|
| 89 |
+
return sum(param.numel() for param in self.parameters() if param.requires_grad)
|
| 90 |
+
|
| 91 |
+
def enable_activation_checkpointing(self) -> None:
|
| 92 |
+
"""Instead of memorizing the activations of the forward pass, recompute them at various checkpoints."""
|
| 93 |
+
self.checkpoint = partial(torch_checkpoint, use_reentrant=False)
|
| 94 |
+
|
| 95 |
+
def freeze_model_parameters(self) -> Self:
|
| 96 |
+
"""Freeze all model parameters to prevent them from being updated during training."""
|
| 97 |
+
|
| 98 |
+
for param in self.parameters():
|
| 99 |
+
param.requires_grad = False
|
| 100 |
+
|
| 101 |
+
return self
|
| 102 |
+
|
| 103 |
+
def unfreeze_token_embeddings(self) -> Self:
|
| 104 |
+
"""Unfreeze the token embeddings to allow for fine-tuning."""
|
| 105 |
+
|
| 106 |
+
for param in self.token_embeddings.parameters():
|
| 107 |
+
param.requires_grad = True
|
| 108 |
+
|
| 109 |
+
return self
|
| 110 |
+
|
| 111 |
+
@torch.no_grad()
|
| 112 |
+
def resize_token_embeddings(self, vocabulary_size: int) -> Self:
|
| 113 |
+
"""Resize the token embeddings to accommodate a new vocabulary size."""
|
| 114 |
+
|
| 115 |
+
if vocabulary_size <= 0:
|
| 116 |
+
raise ValueError(
|
| 117 |
+
f"Vocabulary size must be greater than 0, {vocabulary_size} given."
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
new_embeddings = Embedding(
|
| 121 |
+
vocabulary_size, self.token_embeddings.embedding_dim
|
| 122 |
+
).to(self.token_embeddings.weight.device)
|
| 123 |
+
|
| 124 |
+
num_tokens_to_copy = min(vocabulary_size, self.token_embeddings.num_embeddings)
|
| 125 |
+
|
| 126 |
+
new_embeddings.weight[:num_tokens_to_copy, :] = self.token_embeddings.weight[
|
| 127 |
+
:num_tokens_to_copy, :
|
| 128 |
+
]
|
| 129 |
+
|
| 130 |
+
for i in range(num_tokens_to_copy, vocabulary_size):
|
| 131 |
+
new_embeddings.weight[i] = torch.randn(new_embeddings.embedding_dim) / sqrt(
|
| 132 |
+
new_embeddings.embedding_dim
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
self.token_embeddings.weight = new_embeddings.weight
|
| 136 |
+
self.token_embeddings.num_embeddings = new_embeddings.num_embeddings
|
| 137 |
+
|
| 138 |
+
self.output_layer.weight = self.token_embeddings.weight
|
| 139 |
+
|
| 140 |
+
self.vocabulary_size = vocabulary_size
|
| 141 |
+
|
| 142 |
+
return self
|
| 143 |
+
|
| 144 |
+
def add_lora_parameters(self, rank: int, alpha: float, dropout: float) -> Self:
|
| 145 |
+
"""Reparameterize the weights of the model using LoRA."""
|
| 146 |
+
|
| 147 |
+
for module in self.body:
|
| 148 |
+
out_features, in_features = module.attention.in_proj_weight.shape
|
| 149 |
+
|
| 150 |
+
register_parametrization(
|
| 151 |
+
module.attention,
|
| 152 |
+
"in_proj_weight",
|
| 153 |
+
LoRA(in_features, out_features, rank, alpha, dropout),
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
out_features, in_features = module.attention.out_proj.weight.shape
|
| 157 |
+
|
| 158 |
+
register_parametrization(
|
| 159 |
+
module.attention.out_proj,
|
| 160 |
+
"weight",
|
| 161 |
+
LoRA(in_features, out_features, rank, alpha, dropout),
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
for layer in module.mlp.layers:
|
| 165 |
+
if isinstance(layer, Linear):
|
| 166 |
+
register_parametrization(
|
| 167 |
+
layer,
|
| 168 |
+
"weight",
|
| 169 |
+
LoRA.from_linear(layer, rank, alpha, dropout),
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
return self
|
| 173 |
+
|
| 174 |
+
def lora_state_dict(self) -> dict[str, Tensor]:
|
| 175 |
+
"""Return a state dict containing only the LoRA parameters."""
|
| 176 |
+
|
| 177 |
+
return {
|
| 178 |
+
name: module
|
| 179 |
+
for name, module in self.state_dict().items()
|
| 180 |
+
if "lora" in name
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
def merge_lora_parameters(self) -> Self:
|
| 184 |
+
"""Merge the LoRA parameters with the original parameters."""
|
| 185 |
+
|
| 186 |
+
for module in self.body:
|
| 187 |
+
if hasattr(module, "parametrizations"):
|
| 188 |
+
lora_params = [name for name in module.parametrizations.keys()]
|
| 189 |
+
|
| 190 |
+
for name in lora_params:
|
| 191 |
+
remove_parametrizations(module, name, leave_parametrized=True)
|
| 192 |
+
|
| 193 |
+
return self
|
| 194 |
+
|
| 195 |
+
def forward(
|
| 196 |
+
self, x: Tensor, y: Tensor | None = None
|
| 197 |
+
) -> tuple[Tensor, Tensor | None]:
|
| 198 |
+
"""A forward pass optimized for batch training."""
|
| 199 |
+
|
| 200 |
+
z = self.token_embeddings(x)
|
| 201 |
+
|
| 202 |
+
b, t, d = z.size()
|
| 203 |
+
|
| 204 |
+
causal_mask = torch.full((t, t), float("-inf"), dtype=z.dtype, device=z.device)
|
| 205 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 206 |
+
|
| 207 |
+
for layer in self.body:
|
| 208 |
+
z = self.checkpoint(layer, z, causal_mask)
|
| 209 |
+
|
| 210 |
+
z = self.output_norm(z)
|
| 211 |
+
z = self.output_layer(z)
|
| 212 |
+
|
| 213 |
+
if y is not None:
|
| 214 |
+
y_pred = z.view(-1, z.size(-1))
|
| 215 |
+
labels = y.view(-1) # Flatten the batch dimension.
|
| 216 |
+
|
| 217 |
+
loss = self.loss_function(y_pred, labels)
|
| 218 |
+
else:
|
| 219 |
+
loss = None
|
| 220 |
+
|
| 221 |
+
return z, loss
|
| 222 |
+
|
| 223 |
+
@torch.no_grad()
|
| 224 |
+
def predict(self, x: Tensor) -> Tensor:
|
| 225 |
+
"""A forward pass optimized for batch next-token prediction."""
|
| 226 |
+
|
| 227 |
+
z = self.token_embeddings(x)
|
| 228 |
+
|
| 229 |
+
b, t, d = z.size()
|
| 230 |
+
|
| 231 |
+
causal_mask = torch.full((t, t), float("-inf"), dtype=z.dtype, device=z.device)
|
| 232 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 233 |
+
|
| 234 |
+
for layer in self.body:
|
| 235 |
+
z = layer(z, causal_mask)
|
| 236 |
+
|
| 237 |
+
z = self.output_norm(z)
|
| 238 |
+
|
| 239 |
+
z = z[:, -1, :] # Pluck only the last token embedding from each batch.
|
| 240 |
+
|
| 241 |
+
z = self.output_layer(z)
|
| 242 |
+
|
| 243 |
+
return z
|
| 244 |
+
|
| 245 |
+
@torch.no_grad()
|
| 246 |
+
def generate(
|
| 247 |
+
self,
|
| 248 |
+
prompt: Tensor,
|
| 249 |
+
max_tokens: int = 1000,
|
| 250 |
+
context_length: int = 1024,
|
| 251 |
+
temperature: float = 1.0,
|
| 252 |
+
top_k: int = 500,
|
| 253 |
+
top_p: float = 0.9,
|
| 254 |
+
eos_indices: set = set(),
|
| 255 |
+
) -> Iterator:
|
| 256 |
+
"""
|
| 257 |
+
Given a prompt, sample the next {max_tokens} tokens from the model weighted
|
| 258 |
+
by their predicted probabilities and filtered by the {top_k} and {top_p}.
|
| 259 |
+
"""
|
| 260 |
+
|
| 261 |
+
if max_tokens <= 0:
|
| 262 |
+
raise ValueError(f"Max tokens must be greater than 0, {max_tokens} given.")
|
| 263 |
+
|
| 264 |
+
if temperature <= 0:
|
| 265 |
+
raise ValueError(
|
| 266 |
+
f"Temperature must be greater than 0, {temperature} given."
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
if top_k <= 0 or top_k > self.vocabulary_size:
|
| 270 |
+
raise ValueError(
|
| 271 |
+
f"Top k must be between 1 and {self.vocabulary_size}, {top_k} given."
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if top_p <= 0.0 or top_p > 1.0:
|
| 275 |
+
raise ValueError(f"Top p must be between 0 and 1, {top_p} given.")
|
| 276 |
+
|
| 277 |
+
context_window = prompt
|
| 278 |
+
|
| 279 |
+
for _ in range(max_tokens):
|
| 280 |
+
context_window = context_window[-context_length:]
|
| 281 |
+
|
| 282 |
+
logits = self.predict(context_window.unsqueeze(0)).squeeze()
|
| 283 |
+
|
| 284 |
+
logits, indices = torch.topk(logits, top_k, sorted=True)
|
| 285 |
+
|
| 286 |
+
probabilities = softmax(logits, dim=0)
|
| 287 |
+
|
| 288 |
+
cumulative_probability_mass = torch.cumsum(probabilities, dim=0)
|
| 289 |
+
|
| 290 |
+
min_probability_mass = cumulative_probability_mass[0]
|
| 291 |
+
|
| 292 |
+
threshold_p = max(top_p, min_probability_mass.item())
|
| 293 |
+
|
| 294 |
+
selected_indices = cumulative_probability_mass <= threshold_p
|
| 295 |
+
|
| 296 |
+
logits = logits[selected_indices]
|
| 297 |
+
indices = indices[selected_indices]
|
| 298 |
+
|
| 299 |
+
logits /= temperature
|
| 300 |
+
|
| 301 |
+
probabilities = softmax(logits, dim=0)
|
| 302 |
+
|
| 303 |
+
offset = torch.multinomial(probabilities, num_samples=1).squeeze()
|
| 304 |
+
|
| 305 |
+
next_token = indices[offset]
|
| 306 |
+
|
| 307 |
+
if next_token.item() in eos_indices:
|
| 308 |
+
break
|
| 309 |
+
|
| 310 |
+
yield next_token
|
| 311 |
+
|
| 312 |
+
context_window = torch.cat((context_window, next_token.unsqueeze(0)))
|
| 313 |
+
|
| 314 |
+
@torch.no_grad()
|
| 315 |
+
def beam_search(
|
| 316 |
+
self,
|
| 317 |
+
prompt: Tensor,
|
| 318 |
+
max_tokens: int = 100,
|
| 319 |
+
context_length: int = 1024,
|
| 320 |
+
num_candidates: int = 3,
|
| 321 |
+
beam_width: int = 16,
|
| 322 |
+
length_penalty: float = 1.0,
|
| 323 |
+
eos_indices: set = set(),
|
| 324 |
+
) -> list:
|
| 325 |
+
"""
|
| 326 |
+
Given a prompt, return the {num_candidates} highest probability sequences. Note that
|
| 327 |
+
this method is often best for generating shorter sequences and is typically less
|
| 328 |
+
natural sounding than sequences that are more random in nature.
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
if max_tokens <= 0:
|
| 332 |
+
raise ValueError(f"Max tokens must be greater than 0, {max_tokens} given.")
|
| 333 |
+
|
| 334 |
+
if num_candidates <= 0:
|
| 335 |
+
raise ValueError(
|
| 336 |
+
f"Num candidates must be greater than 0, {num_candidates} given."
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if beam_width <= 0:
|
| 340 |
+
raise ValueError(f"Beam width must be greater than 0, {beam_width} given.")
|
| 341 |
+
|
| 342 |
+
if length_penalty <= 0:
|
| 343 |
+
raise ValueError(
|
| 344 |
+
f"Length penalty must be greater than 0, {length_penalty} given."
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
@dataclass
|
| 348 |
+
class Candidate:
|
| 349 |
+
cumulative_log_probability: float
|
| 350 |
+
tokens: Tensor
|
| 351 |
+
|
| 352 |
+
def priority(self) -> float:
|
| 353 |
+
return (
|
| 354 |
+
self.cumulative_log_probability / len(self.tokens) ** length_penalty
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
sort_candidates = partial(
|
| 358 |
+
sorted,
|
| 359 |
+
key=lambda candidate: candidate.priority(),
|
| 360 |
+
reverse=True,
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
candidates: list[Candidate] = []
|
| 364 |
+
completed: list[Candidate] = []
|
| 365 |
+
|
| 366 |
+
tokens = torch.tensor([], dtype=prompt.dtype).to(prompt.device)
|
| 367 |
+
|
| 368 |
+
candidates.append(Candidate(0.0, tokens))
|
| 369 |
+
|
| 370 |
+
while len(candidates) > 0:
|
| 371 |
+
candidate = candidates.pop()
|
| 372 |
+
|
| 373 |
+
if len(completed) >= num_candidates:
|
| 374 |
+
completed = sort_candidates(completed)
|
| 375 |
+
|
| 376 |
+
completed = completed[:num_candidates]
|
| 377 |
+
|
| 378 |
+
worst_candidate = completed[-1]
|
| 379 |
+
|
| 380 |
+
if (
|
| 381 |
+
candidate.cumulative_log_probability
|
| 382 |
+
< worst_candidate.cumulative_log_probability
|
| 383 |
+
):
|
| 384 |
+
break
|
| 385 |
+
|
| 386 |
+
if len(candidate.tokens) > 0:
|
| 387 |
+
last_token = candidate.tokens[-1]
|
| 388 |
+
|
| 389 |
+
if last_token.item() in eos_indices:
|
| 390 |
+
candidate.tokens = candidate.tokens[:-1]
|
| 391 |
+
|
| 392 |
+
completed.append(candidate)
|
| 393 |
+
|
| 394 |
+
continue
|
| 395 |
+
|
| 396 |
+
if len(candidate.tokens) >= max_tokens:
|
| 397 |
+
completed.append(candidate)
|
| 398 |
+
|
| 399 |
+
continue
|
| 400 |
+
|
| 401 |
+
context_window = torch.cat((prompt, candidate.tokens))
|
| 402 |
+
|
| 403 |
+
context_window = context_window[-context_length:]
|
| 404 |
+
|
| 405 |
+
logits = self.predict(context_window.unsqueeze(0)).squeeze()
|
| 406 |
+
|
| 407 |
+
logits, indices = torch.topk(logits, beam_width, sorted=False)
|
| 408 |
+
|
| 409 |
+
log_probabilities = log_softmax(logits, dim=0)
|
| 410 |
+
|
| 411 |
+
for log_probability, index in zip(log_probabilities, indices):
|
| 412 |
+
cumulative_log_probability = (
|
| 413 |
+
candidate.cumulative_log_probability + log_probability
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
tokens = torch.cat((candidate.tokens, index.unsqueeze(0)))
|
| 417 |
+
|
| 418 |
+
candidates.append(Candidate(cumulative_log_probability, tokens))
|
| 419 |
+
|
| 420 |
+
candidates = sort_candidates(candidates)
|
| 421 |
+
|
| 422 |
+
candidates = candidates[:beam_width]
|
| 423 |
+
|
| 424 |
+
return completed
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
class LightGPTHuggingFaceConfig(PretrainedConfig):
|
| 428 |
+
"""Provide a monolithic configuration object to compensate for HuggingFace Transformers' API."""
|
| 429 |
+
|
| 430 |
+
model_type = "lightgpt"
|
| 431 |
+
|
| 432 |
+
def __init__(
|
| 433 |
+
self,
|
| 434 |
+
vocabulary_size: int = 50257,
|
| 435 |
+
embedding_dimensions: int = 1024,
|
| 436 |
+
num_heads: int = 16,
|
| 437 |
+
num_layers: int = 24,
|
| 438 |
+
feed_forward_ratio: int = 4,
|
| 439 |
+
dropout: float = 0.1,
|
| 440 |
+
padding_index: int = -100,
|
| 441 |
+
**kwargs,
|
| 442 |
+
):
|
| 443 |
+
self.vocabulary_size = vocabulary_size
|
| 444 |
+
self.embedding_dimensions = embedding_dimensions
|
| 445 |
+
self.num_heads = num_heads
|
| 446 |
+
self.num_layers = num_layers
|
| 447 |
+
self.feed_forward_ratio = feed_forward_ratio
|
| 448 |
+
self.dropout = dropout
|
| 449 |
+
self.padding_index = padding_index
|
| 450 |
+
|
| 451 |
+
super().__init__(**kwargs)
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class LightGPTHuggingFaceModel(PreTrainedModel):
|
| 455 |
+
"""Compensate for HuggingFace Transformers' API using a model wrapper."""
|
| 456 |
+
|
| 457 |
+
config_class = LightGPTHuggingFaceConfig
|
| 458 |
+
|
| 459 |
+
def __init__(self, config: LightGPTHuggingFaceConfig):
|
| 460 |
+
super().__init__(config)
|
| 461 |
+
|
| 462 |
+
self.model = LightGPT(
|
| 463 |
+
config.vocabulary_size,
|
| 464 |
+
config.embedding_dimensions,
|
| 465 |
+
config.num_heads,
|
| 466 |
+
config.num_layers,
|
| 467 |
+
config.feed_forward_ratio,
|
| 468 |
+
config.dropout,
|
| 469 |
+
config.padding_index,
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
def forward(
|
| 473 |
+
self, x: Tensor, y: Tensor | None = None
|
| 474 |
+
) -> tuple[Tensor, Tensor | None]:
|
| 475 |
+
logits, loss = self.model.forward(x, y)
|
| 476 |
+
|
| 477 |
+
return {
|
| 478 |
+
"logits": logits,
|
| 479 |
+
"loss": loss,
|
| 480 |
+
}
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class CausalSelfAttentionBlock(Module):
|
| 484 |
+
"""Causal self-attention block with residual connections."""
|
| 485 |
+
|
| 486 |
+
def __init__(
|
| 487 |
+
self,
|
| 488 |
+
embedding_dimensions: int,
|
| 489 |
+
num_heads: int,
|
| 490 |
+
feed_forward_ratio: int,
|
| 491 |
+
dropout: float,
|
| 492 |
+
):
|
| 493 |
+
super().__init__()
|
| 494 |
+
|
| 495 |
+
if embedding_dimensions <= 0:
|
| 496 |
+
raise ValueError(
|
| 497 |
+
f"Embedding dimensions must be greater than 0, {embedding_dimensions} given."
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
if num_heads <= 0:
|
| 501 |
+
raise ValueError(f"Num heads must be greater than 0, {num_heads} given.")
|
| 502 |
+
|
| 503 |
+
if dropout < 0 or dropout > 1:
|
| 504 |
+
raise ValueError(f"Dropout must be between 0 and 1, {dropout} given")
|
| 505 |
+
|
| 506 |
+
self.norm1 = RMSNorm(embedding_dimensions)
|
| 507 |
+
self.attention = MultiheadAttention(
|
| 508 |
+
embedding_dimensions,
|
| 509 |
+
num_heads,
|
| 510 |
+
batch_first=True,
|
| 511 |
+
dropout=dropout,
|
| 512 |
+
bias=False,
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
hidden_dimensions = feed_forward_ratio * embedding_dimensions
|
| 516 |
+
|
| 517 |
+
self.norm2 = RMSNorm(embedding_dimensions)
|
| 518 |
+
self.mlp = MLP(embedding_dimensions, hidden_dimensions, dropout)
|
| 519 |
+
|
| 520 |
+
def forward(self, x: Tensor, attention_mask: Tensor) -> Tensor:
|
| 521 |
+
z = self.norm1(x)
|
| 522 |
+
z, _ = self.attention(z, z, z, attn_mask=attention_mask, is_causal=True)
|
| 523 |
+
|
| 524 |
+
z = x + z # Residual connection
|
| 525 |
+
|
| 526 |
+
x = z
|
| 527 |
+
|
| 528 |
+
z = self.norm2(x)
|
| 529 |
+
z = self.mlp(z)
|
| 530 |
+
|
| 531 |
+
z = x + z # Residual connection
|
| 532 |
+
|
| 533 |
+
return z
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class MLP(Module):
|
| 537 |
+
"""A two-layer fully-connected network with dropout."""
|
| 538 |
+
|
| 539 |
+
def __init__(
|
| 540 |
+
self, embedding_dimensions: int, hidden_dimensions: int, dropout: float
|
| 541 |
+
):
|
| 542 |
+
super().__init__()
|
| 543 |
+
|
| 544 |
+
if embedding_dimensions <= 0:
|
| 545 |
+
raise ValueError(
|
| 546 |
+
f"Embedding dimensions must be greater than 0, {embedding_dimensions} given."
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
if hidden_dimensions <= 0:
|
| 550 |
+
raise ValueError(
|
| 551 |
+
f"Hidden dimensions must be greater than 0, {hidden_dimensions} given."
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
self.layers = Sequential(
|
| 555 |
+
Linear(embedding_dimensions, hidden_dimensions, bias=False),
|
| 556 |
+
SiLU(),
|
| 557 |
+
Linear(hidden_dimensions, embedding_dimensions, bias=False),
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
self.dropout = Dropout1d(p=dropout)
|
| 561 |
+
|
| 562 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 563 |
+
return self.dropout(self.layers(x))
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
class LoRA(Module):
|
| 567 |
+
"""Rank decomposition transformation."""
|
| 568 |
+
|
| 569 |
+
@classmethod
|
| 570 |
+
def from_linear(
|
| 571 |
+
cls, linear: Linear, rank: int, alpha: float, dropout: float
|
| 572 |
+
) -> Self:
|
| 573 |
+
out_features, in_features = linear.weight.shape
|
| 574 |
+
|
| 575 |
+
return cls(in_features, out_features, rank, alpha, dropout)
|
| 576 |
+
|
| 577 |
+
def __init__(
|
| 578 |
+
self,
|
| 579 |
+
in_features: int,
|
| 580 |
+
out_features: int,
|
| 581 |
+
rank: int,
|
| 582 |
+
alpha: float,
|
| 583 |
+
dropout: float,
|
| 584 |
+
):
|
| 585 |
+
super().__init__()
|
| 586 |
+
|
| 587 |
+
if rank <= 0:
|
| 588 |
+
raise ValueError(f"Rank must be greater than 0, {rank} given.")
|
| 589 |
+
|
| 590 |
+
if alpha <= 0.0:
|
| 591 |
+
raise ValueError(f"Alpha must be greater than 0, {alpha} given.")
|
| 592 |
+
|
| 593 |
+
if dropout < 0 or dropout > 1:
|
| 594 |
+
raise ValueError(f"Dropout must be between 0 and 1, {dropout} given")
|
| 595 |
+
|
| 596 |
+
self.lora_a = Parameter(torch.randn(rank, in_features) / sqrt(rank))
|
| 597 |
+
self.lora_b = Parameter(torch.zeros(out_features, rank))
|
| 598 |
+
|
| 599 |
+
self.dropout = Dropout1d(dropout)
|
| 600 |
+
|
| 601 |
+
self.alpha = alpha
|
| 602 |
+
|
| 603 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 604 |
+
z = self.lora_b @ self.dropout(self.lora_a)
|
| 605 |
+
|
| 606 |
+
z *= self.alpha
|
| 607 |
+
|
| 608 |
+
return x + z
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8408c3f7c282506d3d6ac2d2ca86a50520de2ff8e6569a97a011b0dce92b08cd
|
| 3 |
+
size 1426645912
|