andrewdalpino commited on
Commit
d6ce3c6
·
verified ·
1 Parent(s): b233906

Upload model

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +19 -0
  3. model.py +608 -0
  4. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LightGPTHuggingFaceModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "model.LightGPTHuggingFaceConfig",
7
+ "AutoModel": "model.LightGPTHuggingFaceModel"
8
+ },
9
+ "dropout": 0.1,
10
+ "embedding_dimensions": 1024,
11
+ "feed_forward_ratio": 4,
12
+ "model_type": "lightgpt",
13
+ "num_heads": 16,
14
+ "num_layers": 24,
15
+ "padding_index": -100,
16
+ "torch_dtype": "float32",
17
+ "transformers_version": "4.49.0",
18
+ "vocabulary_size": 50257
19
+ }
model.py ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import sqrt
2
+ from dataclasses import dataclass
3
+ from functools import partial, cached_property
4
+ from typing import Iterator, Self
5
+
6
+ import torch
7
+
8
+ from torch import Tensor
9
+ from torch.nn import (
10
+ Module,
11
+ ModuleList,
12
+ Sequential,
13
+ Embedding,
14
+ MultiheadAttention,
15
+ Linear,
16
+ SiLU,
17
+ RMSNorm,
18
+ Dropout1d,
19
+ CrossEntropyLoss,
20
+ Parameter,
21
+ )
22
+
23
+ from torch.nn.functional import softmax, log_softmax
24
+ from torch.nn.utils.parametrize import register_parametrization, remove_parametrizations
25
+ from torch.utils.checkpoint import checkpoint as torch_checkpoint
26
+
27
+ from transformers import PretrainedConfig, PreTrainedModel
28
+
29
+
30
+ class LightGPT(Module):
31
+ """A generative pretrained transformer with no positional embeddings."""
32
+
33
+ def __init__(
34
+ self,
35
+ vocabulary_size: int,
36
+ embedding_dimensions: int,
37
+ num_heads: int,
38
+ num_layers: int,
39
+ feed_forward_ratio: int,
40
+ dropout: float,
41
+ padding_index: int,
42
+ ):
43
+ super().__init__()
44
+
45
+ if vocabulary_size <= 0:
46
+ raise ValueError(
47
+ f"Vocabulary size must be greater than 0, {vocabulary_size} given."
48
+ )
49
+
50
+ if num_layers <= 0:
51
+ raise ValueError(f"Num layers must be greater than 0, {num_layers} given.")
52
+
53
+ if feed_forward_ratio not in {1, 2, 4}:
54
+ raise ValueError("Feed-forward ratio must be either 1, 2, or 4.")
55
+
56
+ token_embeddings = Embedding(
57
+ vocabulary_size, embedding_dimensions, padding_idx=padding_index
58
+ )
59
+
60
+ output_layer = Linear(embedding_dimensions, vocabulary_size, bias=False)
61
+
62
+ output_layer.weight = token_embeddings.weight # Tie weights
63
+
64
+ self.token_embeddings = token_embeddings
65
+
66
+ self.body = ModuleList(
67
+ [
68
+ CausalSelfAttentionBlock(
69
+ embedding_dimensions,
70
+ num_heads,
71
+ feed_forward_ratio,
72
+ dropout,
73
+ )
74
+ for _ in range(num_layers)
75
+ ]
76
+ )
77
+
78
+ self.checkpoint = lambda layer, x, attention_mask: layer(x, attention_mask)
79
+
80
+ self.output_norm = RMSNorm(embedding_dimensions)
81
+ self.output_layer = output_layer
82
+
83
+ self.loss_function = CrossEntropyLoss(ignore_index=padding_index)
84
+
85
+ self.vocabulary_size = vocabulary_size
86
+
87
+ @cached_property
88
+ def num_trainable_params(self) -> int:
89
+ return sum(param.numel() for param in self.parameters() if param.requires_grad)
90
+
91
+ def enable_activation_checkpointing(self) -> None:
92
+ """Instead of memorizing the activations of the forward pass, recompute them at various checkpoints."""
93
+ self.checkpoint = partial(torch_checkpoint, use_reentrant=False)
94
+
95
+ def freeze_model_parameters(self) -> Self:
96
+ """Freeze all model parameters to prevent them from being updated during training."""
97
+
98
+ for param in self.parameters():
99
+ param.requires_grad = False
100
+
101
+ return self
102
+
103
+ def unfreeze_token_embeddings(self) -> Self:
104
+ """Unfreeze the token embeddings to allow for fine-tuning."""
105
+
106
+ for param in self.token_embeddings.parameters():
107
+ param.requires_grad = True
108
+
109
+ return self
110
+
111
+ @torch.no_grad()
112
+ def resize_token_embeddings(self, vocabulary_size: int) -> Self:
113
+ """Resize the token embeddings to accommodate a new vocabulary size."""
114
+
115
+ if vocabulary_size <= 0:
116
+ raise ValueError(
117
+ f"Vocabulary size must be greater than 0, {vocabulary_size} given."
118
+ )
119
+
120
+ new_embeddings = Embedding(
121
+ vocabulary_size, self.token_embeddings.embedding_dim
122
+ ).to(self.token_embeddings.weight.device)
123
+
124
+ num_tokens_to_copy = min(vocabulary_size, self.token_embeddings.num_embeddings)
125
+
126
+ new_embeddings.weight[:num_tokens_to_copy, :] = self.token_embeddings.weight[
127
+ :num_tokens_to_copy, :
128
+ ]
129
+
130
+ for i in range(num_tokens_to_copy, vocabulary_size):
131
+ new_embeddings.weight[i] = torch.randn(new_embeddings.embedding_dim) / sqrt(
132
+ new_embeddings.embedding_dim
133
+ )
134
+
135
+ self.token_embeddings.weight = new_embeddings.weight
136
+ self.token_embeddings.num_embeddings = new_embeddings.num_embeddings
137
+
138
+ self.output_layer.weight = self.token_embeddings.weight
139
+
140
+ self.vocabulary_size = vocabulary_size
141
+
142
+ return self
143
+
144
+ def add_lora_parameters(self, rank: int, alpha: float, dropout: float) -> Self:
145
+ """Reparameterize the weights of the model using LoRA."""
146
+
147
+ for module in self.body:
148
+ out_features, in_features = module.attention.in_proj_weight.shape
149
+
150
+ register_parametrization(
151
+ module.attention,
152
+ "in_proj_weight",
153
+ LoRA(in_features, out_features, rank, alpha, dropout),
154
+ )
155
+
156
+ out_features, in_features = module.attention.out_proj.weight.shape
157
+
158
+ register_parametrization(
159
+ module.attention.out_proj,
160
+ "weight",
161
+ LoRA(in_features, out_features, rank, alpha, dropout),
162
+ )
163
+
164
+ for layer in module.mlp.layers:
165
+ if isinstance(layer, Linear):
166
+ register_parametrization(
167
+ layer,
168
+ "weight",
169
+ LoRA.from_linear(layer, rank, alpha, dropout),
170
+ )
171
+
172
+ return self
173
+
174
+ def lora_state_dict(self) -> dict[str, Tensor]:
175
+ """Return a state dict containing only the LoRA parameters."""
176
+
177
+ return {
178
+ name: module
179
+ for name, module in self.state_dict().items()
180
+ if "lora" in name
181
+ }
182
+
183
+ def merge_lora_parameters(self) -> Self:
184
+ """Merge the LoRA parameters with the original parameters."""
185
+
186
+ for module in self.body:
187
+ if hasattr(module, "parametrizations"):
188
+ lora_params = [name for name in module.parametrizations.keys()]
189
+
190
+ for name in lora_params:
191
+ remove_parametrizations(module, name, leave_parametrized=True)
192
+
193
+ return self
194
+
195
+ def forward(
196
+ self, x: Tensor, y: Tensor | None = None
197
+ ) -> tuple[Tensor, Tensor | None]:
198
+ """A forward pass optimized for batch training."""
199
+
200
+ z = self.token_embeddings(x)
201
+
202
+ b, t, d = z.size()
203
+
204
+ causal_mask = torch.full((t, t), float("-inf"), dtype=z.dtype, device=z.device)
205
+ causal_mask = torch.triu(causal_mask, diagonal=1)
206
+
207
+ for layer in self.body:
208
+ z = self.checkpoint(layer, z, causal_mask)
209
+
210
+ z = self.output_norm(z)
211
+ z = self.output_layer(z)
212
+
213
+ if y is not None:
214
+ y_pred = z.view(-1, z.size(-1))
215
+ labels = y.view(-1) # Flatten the batch dimension.
216
+
217
+ loss = self.loss_function(y_pred, labels)
218
+ else:
219
+ loss = None
220
+
221
+ return z, loss
222
+
223
+ @torch.no_grad()
224
+ def predict(self, x: Tensor) -> Tensor:
225
+ """A forward pass optimized for batch next-token prediction."""
226
+
227
+ z = self.token_embeddings(x)
228
+
229
+ b, t, d = z.size()
230
+
231
+ causal_mask = torch.full((t, t), float("-inf"), dtype=z.dtype, device=z.device)
232
+ causal_mask = torch.triu(causal_mask, diagonal=1)
233
+
234
+ for layer in self.body:
235
+ z = layer(z, causal_mask)
236
+
237
+ z = self.output_norm(z)
238
+
239
+ z = z[:, -1, :] # Pluck only the last token embedding from each batch.
240
+
241
+ z = self.output_layer(z)
242
+
243
+ return z
244
+
245
+ @torch.no_grad()
246
+ def generate(
247
+ self,
248
+ prompt: Tensor,
249
+ max_tokens: int = 1000,
250
+ context_length: int = 1024,
251
+ temperature: float = 1.0,
252
+ top_k: int = 500,
253
+ top_p: float = 0.9,
254
+ eos_indices: set = set(),
255
+ ) -> Iterator:
256
+ """
257
+ Given a prompt, sample the next {max_tokens} tokens from the model weighted
258
+ by their predicted probabilities and filtered by the {top_k} and {top_p}.
259
+ """
260
+
261
+ if max_tokens <= 0:
262
+ raise ValueError(f"Max tokens must be greater than 0, {max_tokens} given.")
263
+
264
+ if temperature <= 0:
265
+ raise ValueError(
266
+ f"Temperature must be greater than 0, {temperature} given."
267
+ )
268
+
269
+ if top_k <= 0 or top_k > self.vocabulary_size:
270
+ raise ValueError(
271
+ f"Top k must be between 1 and {self.vocabulary_size}, {top_k} given."
272
+ )
273
+
274
+ if top_p <= 0.0 or top_p > 1.0:
275
+ raise ValueError(f"Top p must be between 0 and 1, {top_p} given.")
276
+
277
+ context_window = prompt
278
+
279
+ for _ in range(max_tokens):
280
+ context_window = context_window[-context_length:]
281
+
282
+ logits = self.predict(context_window.unsqueeze(0)).squeeze()
283
+
284
+ logits, indices = torch.topk(logits, top_k, sorted=True)
285
+
286
+ probabilities = softmax(logits, dim=0)
287
+
288
+ cumulative_probability_mass = torch.cumsum(probabilities, dim=0)
289
+
290
+ min_probability_mass = cumulative_probability_mass[0]
291
+
292
+ threshold_p = max(top_p, min_probability_mass.item())
293
+
294
+ selected_indices = cumulative_probability_mass <= threshold_p
295
+
296
+ logits = logits[selected_indices]
297
+ indices = indices[selected_indices]
298
+
299
+ logits /= temperature
300
+
301
+ probabilities = softmax(logits, dim=0)
302
+
303
+ offset = torch.multinomial(probabilities, num_samples=1).squeeze()
304
+
305
+ next_token = indices[offset]
306
+
307
+ if next_token.item() in eos_indices:
308
+ break
309
+
310
+ yield next_token
311
+
312
+ context_window = torch.cat((context_window, next_token.unsqueeze(0)))
313
+
314
+ @torch.no_grad()
315
+ def beam_search(
316
+ self,
317
+ prompt: Tensor,
318
+ max_tokens: int = 100,
319
+ context_length: int = 1024,
320
+ num_candidates: int = 3,
321
+ beam_width: int = 16,
322
+ length_penalty: float = 1.0,
323
+ eos_indices: set = set(),
324
+ ) -> list:
325
+ """
326
+ Given a prompt, return the {num_candidates} highest probability sequences. Note that
327
+ this method is often best for generating shorter sequences and is typically less
328
+ natural sounding than sequences that are more random in nature.
329
+ """
330
+
331
+ if max_tokens <= 0:
332
+ raise ValueError(f"Max tokens must be greater than 0, {max_tokens} given.")
333
+
334
+ if num_candidates <= 0:
335
+ raise ValueError(
336
+ f"Num candidates must be greater than 0, {num_candidates} given."
337
+ )
338
+
339
+ if beam_width <= 0:
340
+ raise ValueError(f"Beam width must be greater than 0, {beam_width} given.")
341
+
342
+ if length_penalty <= 0:
343
+ raise ValueError(
344
+ f"Length penalty must be greater than 0, {length_penalty} given."
345
+ )
346
+
347
+ @dataclass
348
+ class Candidate:
349
+ cumulative_log_probability: float
350
+ tokens: Tensor
351
+
352
+ def priority(self) -> float:
353
+ return (
354
+ self.cumulative_log_probability / len(self.tokens) ** length_penalty
355
+ )
356
+
357
+ sort_candidates = partial(
358
+ sorted,
359
+ key=lambda candidate: candidate.priority(),
360
+ reverse=True,
361
+ )
362
+
363
+ candidates: list[Candidate] = []
364
+ completed: list[Candidate] = []
365
+
366
+ tokens = torch.tensor([], dtype=prompt.dtype).to(prompt.device)
367
+
368
+ candidates.append(Candidate(0.0, tokens))
369
+
370
+ while len(candidates) > 0:
371
+ candidate = candidates.pop()
372
+
373
+ if len(completed) >= num_candidates:
374
+ completed = sort_candidates(completed)
375
+
376
+ completed = completed[:num_candidates]
377
+
378
+ worst_candidate = completed[-1]
379
+
380
+ if (
381
+ candidate.cumulative_log_probability
382
+ < worst_candidate.cumulative_log_probability
383
+ ):
384
+ break
385
+
386
+ if len(candidate.tokens) > 0:
387
+ last_token = candidate.tokens[-1]
388
+
389
+ if last_token.item() in eos_indices:
390
+ candidate.tokens = candidate.tokens[:-1]
391
+
392
+ completed.append(candidate)
393
+
394
+ continue
395
+
396
+ if len(candidate.tokens) >= max_tokens:
397
+ completed.append(candidate)
398
+
399
+ continue
400
+
401
+ context_window = torch.cat((prompt, candidate.tokens))
402
+
403
+ context_window = context_window[-context_length:]
404
+
405
+ logits = self.predict(context_window.unsqueeze(0)).squeeze()
406
+
407
+ logits, indices = torch.topk(logits, beam_width, sorted=False)
408
+
409
+ log_probabilities = log_softmax(logits, dim=0)
410
+
411
+ for log_probability, index in zip(log_probabilities, indices):
412
+ cumulative_log_probability = (
413
+ candidate.cumulative_log_probability + log_probability
414
+ )
415
+
416
+ tokens = torch.cat((candidate.tokens, index.unsqueeze(0)))
417
+
418
+ candidates.append(Candidate(cumulative_log_probability, tokens))
419
+
420
+ candidates = sort_candidates(candidates)
421
+
422
+ candidates = candidates[:beam_width]
423
+
424
+ return completed
425
+
426
+
427
+ class LightGPTHuggingFaceConfig(PretrainedConfig):
428
+ """Provide a monolithic configuration object to compensate for HuggingFace Transformers' API."""
429
+
430
+ model_type = "lightgpt"
431
+
432
+ def __init__(
433
+ self,
434
+ vocabulary_size: int = 50257,
435
+ embedding_dimensions: int = 1024,
436
+ num_heads: int = 16,
437
+ num_layers: int = 24,
438
+ feed_forward_ratio: int = 4,
439
+ dropout: float = 0.1,
440
+ padding_index: int = -100,
441
+ **kwargs,
442
+ ):
443
+ self.vocabulary_size = vocabulary_size
444
+ self.embedding_dimensions = embedding_dimensions
445
+ self.num_heads = num_heads
446
+ self.num_layers = num_layers
447
+ self.feed_forward_ratio = feed_forward_ratio
448
+ self.dropout = dropout
449
+ self.padding_index = padding_index
450
+
451
+ super().__init__(**kwargs)
452
+
453
+
454
+ class LightGPTHuggingFaceModel(PreTrainedModel):
455
+ """Compensate for HuggingFace Transformers' API using a model wrapper."""
456
+
457
+ config_class = LightGPTHuggingFaceConfig
458
+
459
+ def __init__(self, config: LightGPTHuggingFaceConfig):
460
+ super().__init__(config)
461
+
462
+ self.model = LightGPT(
463
+ config.vocabulary_size,
464
+ config.embedding_dimensions,
465
+ config.num_heads,
466
+ config.num_layers,
467
+ config.feed_forward_ratio,
468
+ config.dropout,
469
+ config.padding_index,
470
+ )
471
+
472
+ def forward(
473
+ self, x: Tensor, y: Tensor | None = None
474
+ ) -> tuple[Tensor, Tensor | None]:
475
+ logits, loss = self.model.forward(x, y)
476
+
477
+ return {
478
+ "logits": logits,
479
+ "loss": loss,
480
+ }
481
+
482
+
483
+ class CausalSelfAttentionBlock(Module):
484
+ """Causal self-attention block with residual connections."""
485
+
486
+ def __init__(
487
+ self,
488
+ embedding_dimensions: int,
489
+ num_heads: int,
490
+ feed_forward_ratio: int,
491
+ dropout: float,
492
+ ):
493
+ super().__init__()
494
+
495
+ if embedding_dimensions <= 0:
496
+ raise ValueError(
497
+ f"Embedding dimensions must be greater than 0, {embedding_dimensions} given."
498
+ )
499
+
500
+ if num_heads <= 0:
501
+ raise ValueError(f"Num heads must be greater than 0, {num_heads} given.")
502
+
503
+ if dropout < 0 or dropout > 1:
504
+ raise ValueError(f"Dropout must be between 0 and 1, {dropout} given")
505
+
506
+ self.norm1 = RMSNorm(embedding_dimensions)
507
+ self.attention = MultiheadAttention(
508
+ embedding_dimensions,
509
+ num_heads,
510
+ batch_first=True,
511
+ dropout=dropout,
512
+ bias=False,
513
+ )
514
+
515
+ hidden_dimensions = feed_forward_ratio * embedding_dimensions
516
+
517
+ self.norm2 = RMSNorm(embedding_dimensions)
518
+ self.mlp = MLP(embedding_dimensions, hidden_dimensions, dropout)
519
+
520
+ def forward(self, x: Tensor, attention_mask: Tensor) -> Tensor:
521
+ z = self.norm1(x)
522
+ z, _ = self.attention(z, z, z, attn_mask=attention_mask, is_causal=True)
523
+
524
+ z = x + z # Residual connection
525
+
526
+ x = z
527
+
528
+ z = self.norm2(x)
529
+ z = self.mlp(z)
530
+
531
+ z = x + z # Residual connection
532
+
533
+ return z
534
+
535
+
536
+ class MLP(Module):
537
+ """A two-layer fully-connected network with dropout."""
538
+
539
+ def __init__(
540
+ self, embedding_dimensions: int, hidden_dimensions: int, dropout: float
541
+ ):
542
+ super().__init__()
543
+
544
+ if embedding_dimensions <= 0:
545
+ raise ValueError(
546
+ f"Embedding dimensions must be greater than 0, {embedding_dimensions} given."
547
+ )
548
+
549
+ if hidden_dimensions <= 0:
550
+ raise ValueError(
551
+ f"Hidden dimensions must be greater than 0, {hidden_dimensions} given."
552
+ )
553
+
554
+ self.layers = Sequential(
555
+ Linear(embedding_dimensions, hidden_dimensions, bias=False),
556
+ SiLU(),
557
+ Linear(hidden_dimensions, embedding_dimensions, bias=False),
558
+ )
559
+
560
+ self.dropout = Dropout1d(p=dropout)
561
+
562
+ def forward(self, x: Tensor) -> Tensor:
563
+ return self.dropout(self.layers(x))
564
+
565
+
566
+ class LoRA(Module):
567
+ """Rank decomposition transformation."""
568
+
569
+ @classmethod
570
+ def from_linear(
571
+ cls, linear: Linear, rank: int, alpha: float, dropout: float
572
+ ) -> Self:
573
+ out_features, in_features = linear.weight.shape
574
+
575
+ return cls(in_features, out_features, rank, alpha, dropout)
576
+
577
+ def __init__(
578
+ self,
579
+ in_features: int,
580
+ out_features: int,
581
+ rank: int,
582
+ alpha: float,
583
+ dropout: float,
584
+ ):
585
+ super().__init__()
586
+
587
+ if rank <= 0:
588
+ raise ValueError(f"Rank must be greater than 0, {rank} given.")
589
+
590
+ if alpha <= 0.0:
591
+ raise ValueError(f"Alpha must be greater than 0, {alpha} given.")
592
+
593
+ if dropout < 0 or dropout > 1:
594
+ raise ValueError(f"Dropout must be between 0 and 1, {dropout} given")
595
+
596
+ self.lora_a = Parameter(torch.randn(rank, in_features) / sqrt(rank))
597
+ self.lora_b = Parameter(torch.zeros(out_features, rank))
598
+
599
+ self.dropout = Dropout1d(dropout)
600
+
601
+ self.alpha = alpha
602
+
603
+ def forward(self, x: Tensor) -> Tensor:
604
+ z = self.lora_b @ self.dropout(self.lora_a)
605
+
606
+ z *= self.alpha
607
+
608
+ return x + z
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8408c3f7c282506d3d6ac2d2ca86a50520de2ff8e6569a97a011b0dce92b08cd
3
+ size 1426645912