anton-l HF Staff commited on
Commit
e39771a
·
1 Parent(s): a332fee

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ - accuracy
8
+ model-index:
9
+ - name: xtreme_s_xlsr_minds14_rerun
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # xtreme_s_xlsr_minds14_rerun
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2890
21
+ - F1: 0.9474
22
+ - Accuracy: 0.9470
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0003
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - distributed_type: multi-GPU
46
+ - num_devices: 2
47
+ - total_train_batch_size: 64
48
+ - total_eval_batch_size: 16
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 1500
52
+ - num_epochs: 50.0
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
59
+ | 2.551 | 2.7 | 200 | 2.5855 | 0.0407 | 0.1201 |
60
+ | 1.6934 | 5.41 | 400 | 1.5072 | 0.5862 | 0.6085 |
61
+ | 0.5914 | 8.11 | 600 | 0.7274 | 0.8270 | 0.8232 |
62
+ | 0.3896 | 10.81 | 800 | 0.4402 | 0.8905 | 0.8890 |
63
+ | 0.5052 | 13.51 | 1000 | 0.4483 | 0.8837 | 0.8829 |
64
+ | 0.4806 | 16.22 | 1200 | 0.4981 | 0.8784 | 0.8787 |
65
+ | 0.2103 | 18.92 | 1400 | 0.4957 | 0.8810 | 0.8817 |
66
+ | 0.4198 | 21.62 | 1600 | 0.5161 | 0.8927 | 0.8921 |
67
+ | 0.11 | 24.32 | 1800 | 0.4456 | 0.8923 | 0.8902 |
68
+ | 0.1233 | 27.03 | 2000 | 0.3858 | 0.9016 | 0.9012 |
69
+ | 0.1827 | 29.73 | 2200 | 0.3765 | 0.9162 | 0.9159 |
70
+ | 0.1235 | 32.43 | 2400 | 0.3716 | 0.9134 | 0.9128 |
71
+ | 0.1873 | 35.14 | 2600 | 0.3080 | 0.9314 | 0.9311 |
72
+ | 0.017 | 37.84 | 2800 | 0.2629 | 0.9415 | 0.9409 |
73
+ | 0.0436 | 40.54 | 3000 | 0.3159 | 0.9397 | 0.9390 |
74
+ | 0.0455 | 43.24 | 3200 | 0.2963 | 0.9393 | 0.9390 |
75
+ | 0.046 | 45.95 | 3400 | 0.2914 | 0.9457 | 0.9451 |
76
+ | 0.0042 | 48.65 | 3600 | 0.2890 | 0.9474 | 0.9470 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.18.0.dev0
82
+ - Pytorch 1.10.2+cu113
83
+ - Datasets 1.18.4.dev0
84
+ - Tokenizers 0.11.6