Commit
·
fdd1aff
1
Parent(s):
5f863d8
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.75 +/- 0.73
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5db7143a1382b5208bfd424fe7641f63141815079bd0942875f7723d1a222979
|
3 |
+
size 108098
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc076e37d00>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc076e32a00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000.0,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675538564143633618,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2FudG9pbmUvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvYW50b2luZS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXMfoPnANubzUcA4/XMfoPnANubzUcA4/XMfoPnANubzUcA4/XMfoPnANubzUcA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr7K5v+kGgr9tJ/i9c4YAv4XNJr5DQXs/y6J9vpMSiD27ZOC9/5/bPxJLJb+/i5k/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcx+g+cA25vNRwDj/PeGS8X8ORu1by3Lxcx+g+cA25vNRwDj/PeGS8X8ORu1by3Lxcx+g+cA25vNRwDj/PeGS8X8ORu1by3Lxcx+g+cA25vNRwDj/PeGS8X8ORu1by3LyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.454646 -0.02258942 0.5564091 ]\n [ 0.454646 -0.02258942 0.5564091 ]\n [ 0.454646 -0.02258942 0.5564091 ]\n [ 0.454646 -0.02258942 0.5564091 ]]",
|
60 |
+
"desired_goal": "[[-1.4507655 -1.0158359 -0.12116895]\n [-0.50205153 -0.16289337 0.98146456]\n [-0.24769132 0.06644168 -0.10956713]\n [ 1.7158202 -0.64567673 1.1995772 ]]",
|
61 |
+
"observation": "[[ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]\n [ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]\n [ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]\n [ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8wmEPQ1cEL5EcJY++X9dvTLFpL0UwYU+jT4XvuY/GT5TmH4+RUVXvSTxBL6eL8c5lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.0644721 -0.14097615 0.29382527]\n [-0.05407712 -0.08045425 0.2612387 ]\n [-0.14769955 0.14965782 0.24862795]\n [-0.05255629 -0.12982613 0.00037992]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3PY96q+X87+UhpRSlIwBbJRLMowBdJRHQJ2UG5J9RaZ1fZQoaAZoCWgPQwhGsdzSasjrv5SGlFKUaBVLMmgWR0Cdk6jyWiUQdX2UKGgGaAloD0MIUmStodRe8b+UhpRSlGgVSzJoFkdAnZCNgBtDUnV9lChoBmgJaA9DCMkgdxGmqP6/lIaUUpRoFUsyaBZHQJ2OG/qPfbd1fZQoaAZoCWgPQwgBT1q4rALxv5SGlFKUaBVLMmgWR0CdlazvqkdndX2UKGgGaAloD0MIbagY52/C8b+UhpRSlGgVSzJoFkdAnZU6c/dIoXV9lChoBmgJaA9DCFb0h2aeXPK/lIaUUpRoFUsyaBZHQJ2SHxlQMx51fZQoaAZoCWgPQwjFWKZfIl7wv5SGlFKUaBVLMmgWR0Cdj63AVO9GdX2UKGgGaAloD0MIi6azk8ER8b+UhpRSlGgVSzJoFkdAnZdcSK3uu3V9lChoBmgJaA9DCKmJPh9lBPO/lIaUUpRoFUsyaBZHQJ2W6c2BJ7N1fZQoaAZoCWgPQwh1WOGWj6Tsv5SGlFKUaBVLMmgWR0Cdk851vES/dX2UKGgGaAloD0MImYOgo1Ut8b+UhpRSlGgVSzJoFkdAnZFdDMNc4nV9lChoBmgJaA9DCB+EgHwJlfe/lIaUUpRoFUsyaBZHQJ2Y97eEZix1fZQoaAZoCWgPQwif5A6byEztv5SGlFKUaBVLMmgWR0CdmIUvPC2udX2UKGgGaAloD0MId0gxQKIJ5b+UhpRSlGgVSzJoFkdAnZVpxNqQBHV9lChoBmgJaA9DCKFkcmpnGOa/lIaUUpRoFUsyaBZHQJ2S+DsdDIB1fZQoaAZoCWgPQwimuKrsu2L6v5SGlFKUaBVLMmgWR0CdmqexwAEMdX2UKGgGaAloD0MIrI2xE16C67+UhpRSlGgVSzJoFkdAnZo1H8TBZnV9lChoBmgJaA9DCI6PFmcMc/q/lIaUUpRoFUsyaBZHQJ2XGc4HX3B1fZQoaAZoCWgPQwhiMH+FzJUBwJSGlFKUaBVLMmgWR0CdlKhW5paidX2UKGgGaAloD0MIcNBefTx08r+UhpRSlGgVSzJoFkdAnZxoywfQr3V9lChoBmgJaA9DCNkkP+JXjAPAlIaUUpRoFUsyaBZHQJ2b9kI5YHR1fZQoaAZoCWgPQwhky/J1GT7zv5SGlFKUaBVLMmgWR0CdmNqs2eg+dX2UKGgGaAloD0MIC9C2mnUG8b+UhpRSlGgVSzJoFkdAnZZpKJ2t+3V9lChoBmgJaA9DCM/b2OxIde+/lIaUUpRoFUsyaBZHQJ2eOQRwqAl1fZQoaAZoCWgPQwjP86eN6nTqv5SGlFKUaBVLMmgWR0CdncaBqbjMdX2UKGgGaAloD0MIexUZHZBE+b+UhpRSlGgVSzJoFkdAnZqrDZUT+XV9lChoBmgJaA9DCM3qHW6Hhu6/lIaUUpRoFUsyaBZHQJ2YOYrrgO11fZQoaAZoCWgPQwgeFf93RAX4v5SGlFKUaBVLMmgWR0CdoCauwHJLdX2UKGgGaAloD0MItam6RzYX/L+UhpRSlGgVSzJoFkdAnZ+0AcT8HnV9lChoBmgJaA9DCLtgcM0dffK/lIaUUpRoFUsyaBZHQJ2cmI3zcyp1fZQoaAZoCWgPQwiKrgs/OF/wv5SGlFKUaBVLMmgWR0CdmicKgIyCdX2UKGgGaAloD0MIeAlOfSD58b+UhpRSlGgVSzJoFkdAnaG3tShrWXV9lChoBmgJaA9DCOoHdZFC2fW/lIaUUpRoFUsyaBZHQJ2hRRCQcPx1fZQoaAZoCWgPQwgziA/s+G/8v5SGlFKUaBVLMmgWR0CdnimQbMoudX2UKGgGaAloD0MITtNnB1y3B8CUhpRSlGgVSzJoFkdAnZu4BmwqzHV9lChoBmgJaA9DCBniWBe3EQbAlIaUUpRoFUsyaBZHQJ2jR2q1gIB1fZQoaAZoCWgPQwip+L8jKpT5v5SGlFKUaBVLMmgWR0CdotToMa0hdX2UKGgGaAloD0MILH3ogvq2DsCUhpRSlGgVSzJoFkdAnZ+5eZ5Rj3V9lChoBmgJaA9DCDp0et6NBey/lIaUUpRoFUsyaBZHQJ2dR9qk/KR1fZQoaAZoCWgPQwjBN02fHfDwv5SGlFKUaBVLMmgWR0CdpLQC0WuYdX2UKGgGaAloD0MIlXzsLlAS/L+UhpRSlGgVSzJoFkdAnaRBb4agmXV9lChoBmgJaA9DCCL/zCA+8Pe/lIaUUpRoFUsyaBZHQJ2hJfF72L51fZQoaAZoCWgPQwgzi1BsBc3uv5SGlFKUaBVLMmgWR0CdnrRP420idX2UKGgGaAloD0MIz6Chf4IL+b+UhpRSlGgVSzJoFkdAnaY/6TGHYnV9lChoBmgJaA9DCMlxp3SwHgbAlIaUUpRoFUsyaBZHQJ2lztBv73x1fZQoaAZoCWgPQwiyLm6jAXzzv5SGlFKUaBVLMmgWR0CdorSsKb8WdX2UKGgGaAloD0MI3UWYolza9L+UhpRSlGgVSzJoFkdAnaBEmUnogXV9lChoBmgJaA9DCHH/kenQ6fm/lIaUUpRoFUsyaBZHQJ2oeyiVSoB1fZQoaAZoCWgPQwjylNV0PTEDwJSGlFKUaBVLMmgWR0CdqAlN1yNodX2UKGgGaAloD0MInQ/PEmSE+b+UhpRSlGgVSzJoFkdAnaTuLzf78HV9lChoBmgJaA9DCPtcbcX+cv6/lIaUUpRoFUsyaBZHQJ2ifNFBppN1fZQoaAZoCWgPQwhxcr9DUeD1v5SGlFKUaBVLMmgWR0CdqgiPQv6CdX2UKGgGaAloD0MIc9cS8kGP8b+UhpRSlGgVSzJoFkdAnamWAXl8xHV9lChoBmgJaA9DCKMgeHx71/S/lIaUUpRoFUsyaBZHQJ2mep2ll9V1fZQoaAZoCWgPQwiyL9l4sMX0v5SGlFKUaBVLMmgWR0CdpAk/r0J4dX2UKGgGaAloD0MIkzmWd9XD/L+UhpRSlGgVSzJoFkdAnaund43WF3V9lChoBmgJaA9DCM4cklooWfq/lIaUUpRoFUsyaBZHQJ2rNOmBOHp1fZQoaAZoCWgPQwg5DOavkFkBwJSGlFKUaBVLMmgWR0CdqBl4keIVdX2UKGgGaAloD0MIDmYTYFj+9r+UhpRSlGgVSzJoFkdAnaWoBzV+Z3V9lChoBmgJaA9DCBdjYB3H7wDAlIaUUpRoFUsyaBZHQJ2tYFY+0PZ1fZQoaAZoCWgPQwhvRs1XyYf3v5SGlFKUaBVLMmgWR0CdrO3Gn4widX2UKGgGaAloD0MINEqX/iXp87+UhpRSlGgVSzJoFkdAnanSU9pyqHV9lChoBmgJaA9DCMYwJ2iTQ/e/lIaUUpRoFUsyaBZHQJ2nYO5J9Rd1fZQoaAZoCWgPQwj4U+OlmwTyv5SGlFKUaBVLMmgWR0Cdr3IAfdRBdX2UKGgGaAloD0MIkMAffv678r+UhpRSlGgVSzJoFkdAna8AHJLdvnV9lChoBmgJaA9DCHpRu18F+ALAlIaUUpRoFUsyaBZHQJ2r5LoOhCd1fZQoaAZoCWgPQwggRgiPNs78v5SGlFKUaBVLMmgWR0CdqXPP9kz5dX2UKGgGaAloD0MIih2NQ/0uBcCUhpRSlGgVSzJoFkdAnbFPV7Qb/HV9lChoBmgJaA9DCNOHLqhvWQHAlIaUUpRoFUsyaBZHQJ2w3M+u/1x1fZQoaAZoCWgPQwhbJO1GHzPyv5SGlFKUaBVLMmgWR0CdrcHUMG5ddX2UKGgGaAloD0MI8gnZeRsb7b+UhpRSlGgVSzJoFkdAnatQSJ0nxHV9lChoBmgJaA9DCD8Cf/j5L/S/lIaUUpRoFUsyaBZHQJ2y/j6vaDh1fZQoaAZoCWgPQwhPWOIBZVMAwJSGlFKUaBVLMmgWR0CdsouhbnoxdX2UKGgGaAloD0MILgJjfQNTBcCUhpRSlGgVSzJoFkdAna9wbuMMqnV9lChoBmgJaA9DCKES1zGuuPS/lIaUUpRoFUsyaBZHQJ2s/xH5Jsh1fZQoaAZoCWgPQwg17WKa6V7vv5SGlFKUaBVLMmgWR0CdtIir1dxAdX2UKGgGaAloD0MIsRU0LbGy97+UhpRSlGgVSzJoFkdAnbQWAbyYonV9lChoBmgJaA9DCMefqGxYE/O/lIaUUpRoFUsyaBZHQJ2w+oqCpWF1fZQoaAZoCWgPQwhhUnx8QtYBwJSGlFKUaBVLMmgWR0CdrokTpPhydX2UKGgGaAloD0MI2h1SDJDo7b+UhpRSlGgVSzJoFkdAnbYp2ECeVnV9lChoBmgJaA9DCOnTKvpD8/a/lIaUUpRoFUsyaBZHQJ21tzwMH8l1fZQoaAZoCWgPQwjNAu0OKUb3v5SGlFKUaBVLMmgWR0Cdspu9vjwQdX2UKGgGaAloD0MIjSRBuAKqAMCUhpRSlGgVSzJoFkdAnbAqOtGNJnV9lChoBmgJaA9DCF2lu+tsyADAlIaUUpRoFUsyaBZHQJ230Mw1zhh1fZQoaAZoCWgPQwjYg0nx8Qnxv5SGlFKUaBVLMmgWR0Cdt15kbxVidX2UKGgGaAloD0MI1PIDV3nC/L+UhpRSlGgVSzJoFkdAnbRC9AX2unV9lChoBmgJaA9DCKKzzCIUm/S/lIaUUpRoFUsyaBZHQJ2x0YR/ViF1fZQoaAZoCWgPQwjarWUyHE/pv5SGlFKUaBVLMmgWR0Cducjebd8BdX2UKGgGaAloD0MI0UGXcOjt/b+UhpRSlGgVSzJoFkdAnblWVE/jbXV9lChoBmgJaA9DCFZl3xXBP/K/lIaUUpRoFUsyaBZHQJ22OsPrfLt1fZQoaAZoCWgPQwiNRj6veOrvv5SGlFKUaBVLMmgWR0Cds8oAn2IwdX2UKGgGaAloD0MI9tIUAU6vBMCUhpRSlGgVSzJoFkdAnbt+DSPU8XV9lChoBmgJaA9DCI/Ey9O54vm/lIaUUpRoFUsyaBZHQJ27C4FzMid1fZQoaAZoCWgPQwgCui9ntivlv5SGlFKUaBVLMmgWR0Cdt/AcDKYBdX2UKGgGaAloD0MI+iXirfMPBMCUhpRSlGgVSzJoFkdAnbV+mzjWCnV9lChoBmgJaA9DCFZ+GYwRSQLAlIaUUpRoFUsyaBZHQJ29QyYXwb51fZQoaAZoCWgPQwiW7NgIxGv/v5SGlFKUaBVLMmgWR0CdvNCr92ovdX2UKGgGaAloD0MIW86luKpsAMCUhpRSlGgVSzJoFkdAnbm1YZEUkHV9lChoBmgJaA9DCN1AgXfy6fO/lIaUUpRoFUsyaBZHQJ23Q+W4Vh11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:036bcf142796880299c368bba32c6006a85b384c541c00c668c854f747d02277
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79e954d2eb24d9898bfdd47854e13a41102f39cbfba3d7a9eb1f875cd731d4e0
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Nov 23 01:01:46 UTC 2022
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc076e37d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc076e32a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675538564143633618, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2FudG9pbmUvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvYW50b2luZS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXMfoPnANubzUcA4/XMfoPnANubzUcA4/XMfoPnANubzUcA4/XMfoPnANubzUcA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr7K5v+kGgr9tJ/i9c4YAv4XNJr5DQXs/y6J9vpMSiD27ZOC9/5/bPxJLJb+/i5k/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcx+g+cA25vNRwDj/PeGS8X8ORu1by3Lxcx+g+cA25vNRwDj/PeGS8X8ORu1by3Lxcx+g+cA25vNRwDj/PeGS8X8ORu1by3Lxcx+g+cA25vNRwDj/PeGS8X8ORu1by3LyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.454646 -0.02258942 0.5564091 ]\n [ 0.454646 -0.02258942 0.5564091 ]\n [ 0.454646 -0.02258942 0.5564091 ]\n [ 0.454646 -0.02258942 0.5564091 ]]", "desired_goal": "[[-1.4507655 -1.0158359 -0.12116895]\n [-0.50205153 -0.16289337 0.98146456]\n [-0.24769132 0.06644168 -0.10956713]\n [ 1.7158202 -0.64567673 1.1995772 ]]", "observation": "[[ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]\n [ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]\n [ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]\n [ 0.454646 -0.02258942 0.5564091 -0.01394482 -0.00444834 -0.02697102]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8wmEPQ1cEL5EcJY++X9dvTLFpL0UwYU+jT4XvuY/GT5TmH4+RUVXvSTxBL6eL8c5lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0644721 -0.14097615 0.29382527]\n [-0.05407712 -0.08045425 0.2612387 ]\n [-0.14769955 0.14965782 0.24862795]\n [-0.05255629 -0.12982613 0.00037992]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3PY96q+X87+UhpRSlIwBbJRLMowBdJRHQJ2UG5J9RaZ1fZQoaAZoCWgPQwhGsdzSasjrv5SGlFKUaBVLMmgWR0Cdk6jyWiUQdX2UKGgGaAloD0MIUmStodRe8b+UhpRSlGgVSzJoFkdAnZCNgBtDUnV9lChoBmgJaA9DCMkgdxGmqP6/lIaUUpRoFUsyaBZHQJ2OG/qPfbd1fZQoaAZoCWgPQwgBT1q4rALxv5SGlFKUaBVLMmgWR0CdlazvqkdndX2UKGgGaAloD0MIbagY52/C8b+UhpRSlGgVSzJoFkdAnZU6c/dIoXV9lChoBmgJaA9DCFb0h2aeXPK/lIaUUpRoFUsyaBZHQJ2SHxlQMx51fZQoaAZoCWgPQwjFWKZfIl7wv5SGlFKUaBVLMmgWR0Cdj63AVO9GdX2UKGgGaAloD0MIi6azk8ER8b+UhpRSlGgVSzJoFkdAnZdcSK3uu3V9lChoBmgJaA9DCKmJPh9lBPO/lIaUUpRoFUsyaBZHQJ2W6c2BJ7N1fZQoaAZoCWgPQwh1WOGWj6Tsv5SGlFKUaBVLMmgWR0Cdk851vES/dX2UKGgGaAloD0MImYOgo1Ut8b+UhpRSlGgVSzJoFkdAnZFdDMNc4nV9lChoBmgJaA9DCB+EgHwJlfe/lIaUUpRoFUsyaBZHQJ2Y97eEZix1fZQoaAZoCWgPQwif5A6byEztv5SGlFKUaBVLMmgWR0CdmIUvPC2udX2UKGgGaAloD0MId0gxQKIJ5b+UhpRSlGgVSzJoFkdAnZVpxNqQBHV9lChoBmgJaA9DCKFkcmpnGOa/lIaUUpRoFUsyaBZHQJ2S+DsdDIB1fZQoaAZoCWgPQwimuKrsu2L6v5SGlFKUaBVLMmgWR0CdmqexwAEMdX2UKGgGaAloD0MIrI2xE16C67+UhpRSlGgVSzJoFkdAnZo1H8TBZnV9lChoBmgJaA9DCI6PFmcMc/q/lIaUUpRoFUsyaBZHQJ2XGc4HX3B1fZQoaAZoCWgPQwhiMH+FzJUBwJSGlFKUaBVLMmgWR0CdlKhW5paidX2UKGgGaAloD0MIcNBefTx08r+UhpRSlGgVSzJoFkdAnZxoywfQr3V9lChoBmgJaA9DCNkkP+JXjAPAlIaUUpRoFUsyaBZHQJ2b9kI5YHR1fZQoaAZoCWgPQwhky/J1GT7zv5SGlFKUaBVLMmgWR0CdmNqs2eg+dX2UKGgGaAloD0MIC9C2mnUG8b+UhpRSlGgVSzJoFkdAnZZpKJ2t+3V9lChoBmgJaA9DCM/b2OxIde+/lIaUUpRoFUsyaBZHQJ2eOQRwqAl1fZQoaAZoCWgPQwjP86eN6nTqv5SGlFKUaBVLMmgWR0CdncaBqbjMdX2UKGgGaAloD0MIexUZHZBE+b+UhpRSlGgVSzJoFkdAnZqrDZUT+XV9lChoBmgJaA9DCM3qHW6Hhu6/lIaUUpRoFUsyaBZHQJ2YOYrrgO11fZQoaAZoCWgPQwgeFf93RAX4v5SGlFKUaBVLMmgWR0CdoCauwHJLdX2UKGgGaAloD0MItam6RzYX/L+UhpRSlGgVSzJoFkdAnZ+0AcT8HnV9lChoBmgJaA9DCLtgcM0dffK/lIaUUpRoFUsyaBZHQJ2cmI3zcyp1fZQoaAZoCWgPQwiKrgs/OF/wv5SGlFKUaBVLMmgWR0CdmicKgIyCdX2UKGgGaAloD0MIeAlOfSD58b+UhpRSlGgVSzJoFkdAnaG3tShrWXV9lChoBmgJaA9DCOoHdZFC2fW/lIaUUpRoFUsyaBZHQJ2hRRCQcPx1fZQoaAZoCWgPQwgziA/s+G/8v5SGlFKUaBVLMmgWR0CdnimQbMoudX2UKGgGaAloD0MITtNnB1y3B8CUhpRSlGgVSzJoFkdAnZu4BmwqzHV9lChoBmgJaA9DCBniWBe3EQbAlIaUUpRoFUsyaBZHQJ2jR2q1gIB1fZQoaAZoCWgPQwip+L8jKpT5v5SGlFKUaBVLMmgWR0CdotToMa0hdX2UKGgGaAloD0MILH3ogvq2DsCUhpRSlGgVSzJoFkdAnZ+5eZ5Rj3V9lChoBmgJaA9DCDp0et6NBey/lIaUUpRoFUsyaBZHQJ2dR9qk/KR1fZQoaAZoCWgPQwjBN02fHfDwv5SGlFKUaBVLMmgWR0CdpLQC0WuYdX2UKGgGaAloD0MIlXzsLlAS/L+UhpRSlGgVSzJoFkdAnaRBb4agmXV9lChoBmgJaA9DCCL/zCA+8Pe/lIaUUpRoFUsyaBZHQJ2hJfF72L51fZQoaAZoCWgPQwgzi1BsBc3uv5SGlFKUaBVLMmgWR0CdnrRP420idX2UKGgGaAloD0MIz6Chf4IL+b+UhpRSlGgVSzJoFkdAnaY/6TGHYnV9lChoBmgJaA9DCMlxp3SwHgbAlIaUUpRoFUsyaBZHQJ2lztBv73x1fZQoaAZoCWgPQwiyLm6jAXzzv5SGlFKUaBVLMmgWR0CdorSsKb8WdX2UKGgGaAloD0MI3UWYolza9L+UhpRSlGgVSzJoFkdAnaBEmUnogXV9lChoBmgJaA9DCHH/kenQ6fm/lIaUUpRoFUsyaBZHQJ2oeyiVSoB1fZQoaAZoCWgPQwjylNV0PTEDwJSGlFKUaBVLMmgWR0CdqAlN1yNodX2UKGgGaAloD0MInQ/PEmSE+b+UhpRSlGgVSzJoFkdAnaTuLzf78HV9lChoBmgJaA9DCPtcbcX+cv6/lIaUUpRoFUsyaBZHQJ2ifNFBppN1fZQoaAZoCWgPQwhxcr9DUeD1v5SGlFKUaBVLMmgWR0CdqgiPQv6CdX2UKGgGaAloD0MIc9cS8kGP8b+UhpRSlGgVSzJoFkdAnamWAXl8xHV9lChoBmgJaA9DCKMgeHx71/S/lIaUUpRoFUsyaBZHQJ2mep2ll9V1fZQoaAZoCWgPQwiyL9l4sMX0v5SGlFKUaBVLMmgWR0CdpAk/r0J4dX2UKGgGaAloD0MIkzmWd9XD/L+UhpRSlGgVSzJoFkdAnaund43WF3V9lChoBmgJaA9DCM4cklooWfq/lIaUUpRoFUsyaBZHQJ2rNOmBOHp1fZQoaAZoCWgPQwg5DOavkFkBwJSGlFKUaBVLMmgWR0CdqBl4keIVdX2UKGgGaAloD0MIDmYTYFj+9r+UhpRSlGgVSzJoFkdAnaWoBzV+Z3V9lChoBmgJaA9DCBdjYB3H7wDAlIaUUpRoFUsyaBZHQJ2tYFY+0PZ1fZQoaAZoCWgPQwhvRs1XyYf3v5SGlFKUaBVLMmgWR0CdrO3Gn4widX2UKGgGaAloD0MINEqX/iXp87+UhpRSlGgVSzJoFkdAnanSU9pyqHV9lChoBmgJaA9DCMYwJ2iTQ/e/lIaUUpRoFUsyaBZHQJ2nYO5J9Rd1fZQoaAZoCWgPQwj4U+OlmwTyv5SGlFKUaBVLMmgWR0Cdr3IAfdRBdX2UKGgGaAloD0MIkMAffv678r+UhpRSlGgVSzJoFkdAna8AHJLdvnV9lChoBmgJaA9DCHpRu18F+ALAlIaUUpRoFUsyaBZHQJ2r5LoOhCd1fZQoaAZoCWgPQwggRgiPNs78v5SGlFKUaBVLMmgWR0CdqXPP9kz5dX2UKGgGaAloD0MIih2NQ/0uBcCUhpRSlGgVSzJoFkdAnbFPV7Qb/HV9lChoBmgJaA9DCNOHLqhvWQHAlIaUUpRoFUsyaBZHQJ2w3M+u/1x1fZQoaAZoCWgPQwhbJO1GHzPyv5SGlFKUaBVLMmgWR0CdrcHUMG5ddX2UKGgGaAloD0MI8gnZeRsb7b+UhpRSlGgVSzJoFkdAnatQSJ0nxHV9lChoBmgJaA9DCD8Cf/j5L/S/lIaUUpRoFUsyaBZHQJ2y/j6vaDh1fZQoaAZoCWgPQwhPWOIBZVMAwJSGlFKUaBVLMmgWR0CdsouhbnoxdX2UKGgGaAloD0MILgJjfQNTBcCUhpRSlGgVSzJoFkdAna9wbuMMqnV9lChoBmgJaA9DCKES1zGuuPS/lIaUUpRoFUsyaBZHQJ2s/xH5Jsh1fZQoaAZoCWgPQwg17WKa6V7vv5SGlFKUaBVLMmgWR0CdtIir1dxAdX2UKGgGaAloD0MIsRU0LbGy97+UhpRSlGgVSzJoFkdAnbQWAbyYonV9lChoBmgJaA9DCMefqGxYE/O/lIaUUpRoFUsyaBZHQJ2w+oqCpWF1fZQoaAZoCWgPQwhhUnx8QtYBwJSGlFKUaBVLMmgWR0CdrokTpPhydX2UKGgGaAloD0MI2h1SDJDo7b+UhpRSlGgVSzJoFkdAnbYp2ECeVnV9lChoBmgJaA9DCOnTKvpD8/a/lIaUUpRoFUsyaBZHQJ21tzwMH8l1fZQoaAZoCWgPQwjNAu0OKUb3v5SGlFKUaBVLMmgWR0Cdspu9vjwQdX2UKGgGaAloD0MIjSRBuAKqAMCUhpRSlGgVSzJoFkdAnbAqOtGNJnV9lChoBmgJaA9DCF2lu+tsyADAlIaUUpRoFUsyaBZHQJ230Mw1zhh1fZQoaAZoCWgPQwjYg0nx8Qnxv5SGlFKUaBVLMmgWR0Cdt15kbxVidX2UKGgGaAloD0MI1PIDV3nC/L+UhpRSlGgVSzJoFkdAnbRC9AX2unV9lChoBmgJaA9DCKKzzCIUm/S/lIaUUpRoFUsyaBZHQJ2x0YR/ViF1fZQoaAZoCWgPQwjarWUyHE/pv5SGlFKUaBVLMmgWR0Cducjebd8BdX2UKGgGaAloD0MI0UGXcOjt/b+UhpRSlGgVSzJoFkdAnblWVE/jbXV9lChoBmgJaA9DCFZl3xXBP/K/lIaUUpRoFUsyaBZHQJ22OsPrfLt1fZQoaAZoCWgPQwiNRj6veOrvv5SGlFKUaBVLMmgWR0Cds8oAn2IwdX2UKGgGaAloD0MI9tIUAU6vBMCUhpRSlGgVSzJoFkdAnbt+DSPU8XV9lChoBmgJaA9DCI/Ey9O54vm/lIaUUpRoFUsyaBZHQJ27C4FzMid1fZQoaAZoCWgPQwgCui9ntivlv5SGlFKUaBVLMmgWR0Cdt/AcDKYBdX2UKGgGaAloD0MI+iXirfMPBMCUhpRSlGgVSzJoFkdAnbV+mzjWCnV9lChoBmgJaA9DCFZ+GYwRSQLAlIaUUpRoFUsyaBZHQJ29QyYXwb51fZQoaAZoCWgPQwiW7NgIxGv/v5SGlFKUaBVLMmgWR0CdvNCr92ovdX2UKGgGaAloD0MIW86luKpsAMCUhpRSlGgVSzJoFkdAnbm1YZEUkHV9lChoBmgJaA9DCN1AgXfy6fO/lIaUUpRoFUsyaBZHQJ23Q+W4Vh11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (343 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.7507024273276328, "std_reward": 0.7259867978218837, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T20:54:28.831337"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e72f16fb1920c17ba601f26d8df8d611d7e7e96623c1cdf8ccfb1f6d7be637d9
|
3 |
+
size 3273
|