Upload modeling_recast_llama.py with huggingface_hub
Browse files- modeling_recast_llama.py +875 -0
modeling_recast_llama.py
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filename: recastmlp_llama_model.py
|
2 |
+
from .configuration_recast_llama import RECAST8b_llama
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from typing import Optional, Tuple, Union, List
|
9 |
+
from transformers import AutoConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
from transformers.cache_utils import Cache, StaticCache
|
12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
15 |
+
from transformers.models.llama.modeling_llama import (
|
16 |
+
LlamaDecoderLayer,
|
17 |
+
LlamaRotaryEmbedding,
|
18 |
+
LlamaRMSNorm,
|
19 |
+
apply_rotary_pos_emb,
|
20 |
+
repeat_kv,
|
21 |
+
)
|
22 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class MLPTemplateBank(nn.Module):
|
28 |
+
def __init__(self, config, coef_rows, coef_columns):
|
29 |
+
super().__init__()
|
30 |
+
self.hidden_size = config.hidden_size
|
31 |
+
self.intermediate_size = config.intermediate_size
|
32 |
+
self.coef_shape = (coef_rows, coef_columns)
|
33 |
+
|
34 |
+
assert coef_columns is not None, "coef_columns must not be None"
|
35 |
+
|
36 |
+
# Ensure divisibility for proper reshaping
|
37 |
+
assert (
|
38 |
+
self.hidden_size * self.intermediate_size
|
39 |
+
) % coef_rows == 0, f"hidden_size * intermediate_size ({self.hidden_size * self.intermediate_size}) must be divisible by coef_rows ({coef_rows})"
|
40 |
+
|
41 |
+
template_size = self.hidden_size * self.intermediate_size // coef_rows
|
42 |
+
|
43 |
+
self.up_templates = nn.Parameter(torch.randn(coef_columns, template_size))
|
44 |
+
self.gate_templates = nn.Parameter(torch.randn(coef_columns, template_size))
|
45 |
+
|
46 |
+
# Better initialization
|
47 |
+
nn.init.xavier_uniform_(self.up_templates)
|
48 |
+
nn.init.xavier_uniform_(self.gate_templates)
|
49 |
+
|
50 |
+
def forward(self, up_coeffs, gate_coeffs):
|
51 |
+
# Compute chunked weights
|
52 |
+
up_chunks = torch.matmul(up_coeffs, self.up_templates)
|
53 |
+
gate_chunks = torch.matmul(gate_coeffs, self.gate_templates)
|
54 |
+
|
55 |
+
# Reshape to final weight matrices
|
56 |
+
up_weights = up_chunks.reshape(self.intermediate_size, self.hidden_size)
|
57 |
+
gate_weights = gate_chunks.reshape(self.intermediate_size, self.hidden_size)
|
58 |
+
|
59 |
+
return up_weights, gate_weights
|
60 |
+
|
61 |
+
|
62 |
+
class SharedLlamaMLP(nn.Module):
|
63 |
+
def __init__(self, config, bank):
|
64 |
+
super().__init__()
|
65 |
+
self.config = config
|
66 |
+
self.bank = bank
|
67 |
+
self.hidden_size = config.hidden_size
|
68 |
+
self.intermediate_size = config.intermediate_size
|
69 |
+
self.down_proj = nn.Linear(
|
70 |
+
config.intermediate_size, config.hidden_size, bias=False
|
71 |
+
)
|
72 |
+
|
73 |
+
# Initialize coefficients with proper shapes
|
74 |
+
self.up_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
75 |
+
self.gate_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
76 |
+
|
77 |
+
# Initialize with small random values instead of ones, then orthogonalize
|
78 |
+
nn.init.orthogonal_(self.up_coefficients)
|
79 |
+
nn.init.orthogonal_(self.gate_coefficients)
|
80 |
+
|
81 |
+
if config.mlp_bias:
|
82 |
+
self.gate_bias = nn.Parameter(torch.zeros(self.intermediate_size))
|
83 |
+
self.up_bias = nn.Parameter(torch.zeros(self.intermediate_size))
|
84 |
+
else:
|
85 |
+
self.register_parameter("gate_bias", None)
|
86 |
+
self.register_parameter("up_bias", None)
|
87 |
+
|
88 |
+
self.act_fn = F.silu
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
# Generate weights using template bank
|
92 |
+
up_weights, gate_weights = self.bank(
|
93 |
+
self.up_coefficients, self.gate_coefficients # Fixed order
|
94 |
+
)
|
95 |
+
|
96 |
+
# Apply SwiGLU: SiLU(gate * x) * up * x
|
97 |
+
hidden_states = self.act_fn(
|
98 |
+
F.linear(x, gate_weights, self.gate_bias)
|
99 |
+
) * F.linear(x, up_weights, self.up_bias)
|
100 |
+
output = self.down_proj(hidden_states)
|
101 |
+
|
102 |
+
return output
|
103 |
+
|
104 |
+
|
105 |
+
class AttTemplateBank(nn.Module):
|
106 |
+
def __init__(self, config, coef_rows, coef_columns):
|
107 |
+
super().__init__()
|
108 |
+
self.hidden_size = config.hidden_size
|
109 |
+
self.num_heads = config.num_attention_heads
|
110 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
111 |
+
self.num_key_value_heads = getattr(
|
112 |
+
config, "num_key_value_heads", config.num_attention_heads
|
113 |
+
)
|
114 |
+
self.kv_dim = self.num_key_value_heads * self.head_dim
|
115 |
+
self.coef_shape = (coef_rows, coef_columns)
|
116 |
+
|
117 |
+
# Ensure divisibility
|
118 |
+
assert (
|
119 |
+
self.hidden_size * self.hidden_size
|
120 |
+
) % coef_rows == 0, "Q projection size must be divisible by coef_rows"
|
121 |
+
assert (
|
122 |
+
self.kv_dim * self.hidden_size
|
123 |
+
) % coef_rows == 0, "K/V projection size must be divisible by coef_rows"
|
124 |
+
|
125 |
+
# Create templates for Q, K, V
|
126 |
+
self.q_templates = nn.Parameter(
|
127 |
+
torch.randn(coef_columns, self.hidden_size * self.hidden_size // coef_rows)
|
128 |
+
)
|
129 |
+
self.k_templates = nn.Parameter(
|
130 |
+
torch.randn(coef_columns, self.kv_dim * self.hidden_size // coef_rows)
|
131 |
+
)
|
132 |
+
self.v_templates = nn.Parameter(
|
133 |
+
torch.randn(coef_columns, self.kv_dim * self.hidden_size // coef_rows)
|
134 |
+
)
|
135 |
+
|
136 |
+
# Initialize templates
|
137 |
+
nn.init.xavier_uniform_(self.q_templates)
|
138 |
+
nn.init.xavier_uniform_(self.k_templates)
|
139 |
+
nn.init.xavier_uniform_(self.v_templates)
|
140 |
+
|
141 |
+
def forward(self, q_coeffs, k_coeffs, v_coeffs):
|
142 |
+
# Compute chunked weights
|
143 |
+
q_chunks = torch.matmul(q_coeffs, self.q_templates)
|
144 |
+
k_chunks = torch.matmul(k_coeffs, self.k_templates)
|
145 |
+
v_chunks = torch.matmul(v_coeffs, self.v_templates)
|
146 |
+
|
147 |
+
# Reshape to final weight matrices
|
148 |
+
q_weights = q_chunks.reshape(self.hidden_size, self.hidden_size)
|
149 |
+
k_weights = k_chunks.reshape(self.kv_dim, self.hidden_size)
|
150 |
+
v_weights = v_chunks.reshape(self.kv_dim, self.hidden_size)
|
151 |
+
|
152 |
+
return q_weights, k_weights, v_weights
|
153 |
+
|
154 |
+
|
155 |
+
class SharedLlamaAttention(nn.Module):
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
config,
|
159 |
+
layer_idx: Optional[int] = None,
|
160 |
+
bank: Optional[AttTemplateBank] = None,
|
161 |
+
):
|
162 |
+
super().__init__()
|
163 |
+
self.config = config
|
164 |
+
self.bank = bank
|
165 |
+
self.layer_idx = layer_idx
|
166 |
+
self.attention_dropout = config.attention_dropout
|
167 |
+
self.hidden_size = config.hidden_size
|
168 |
+
self.num_heads = config.num_attention_heads
|
169 |
+
self.head_dim = self.hidden_size // self.num_heads
|
170 |
+
self.num_key_value_heads = getattr(
|
171 |
+
config, "num_key_value_heads", config.num_attention_heads
|
172 |
+
)
|
173 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
174 |
+
self.max_position_embeddings = config.max_position_embeddings
|
175 |
+
self.rope_theta = getattr(config, "rope_theta", 10000.0)
|
176 |
+
self.is_causal = True
|
177 |
+
|
178 |
+
self.o_proj = nn.Linear(
|
179 |
+
self.hidden_size,
|
180 |
+
self.hidden_size,
|
181 |
+
bias=getattr(config, "attention_bias", False),
|
182 |
+
)
|
183 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
184 |
+
|
185 |
+
# Initialize coefficients with proper shapes
|
186 |
+
self.q_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
187 |
+
self.k_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
188 |
+
self.v_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
189 |
+
|
190 |
+
# Initialize with small random values
|
191 |
+
nn.init.orthogonal_(self.q_coefficients)
|
192 |
+
nn.init.orthogonal_(self.k_coefficients)
|
193 |
+
nn.init.orthogonal_(self.v_coefficients)
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self,
|
197 |
+
hidden_states,
|
198 |
+
attention_mask=None,
|
199 |
+
past_key_value=None,
|
200 |
+
cache_position=None,
|
201 |
+
position_embeddings=None,
|
202 |
+
position_ids=None,
|
203 |
+
output_attentions=False,
|
204 |
+
use_cache=False,
|
205 |
+
**kwargs,
|
206 |
+
):
|
207 |
+
bsz, q_len, _ = hidden_states.size()
|
208 |
+
|
209 |
+
# Generate weights using template bank
|
210 |
+
q_weights, k_weights, v_weights = self.bank(
|
211 |
+
self.q_coefficients, self.k_coefficients, self.v_coefficients
|
212 |
+
)
|
213 |
+
|
214 |
+
# Apply projections
|
215 |
+
query_states = F.linear(hidden_states, q_weights)
|
216 |
+
key_states = F.linear(hidden_states, k_weights)
|
217 |
+
value_states = F.linear(hidden_states, v_weights)
|
218 |
+
|
219 |
+
# Reshape for multi-head attention
|
220 |
+
query_states = query_states.view(
|
221 |
+
bsz, q_len, self.num_heads, self.head_dim
|
222 |
+
).transpose(1, 2)
|
223 |
+
key_states = key_states.view(
|
224 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
225 |
+
).transpose(1, 2)
|
226 |
+
value_states = value_states.view(
|
227 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
228 |
+
).transpose(1, 2)
|
229 |
+
|
230 |
+
# Apply rotary embeddings
|
231 |
+
if position_embeddings is None:
|
232 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
233 |
+
else:
|
234 |
+
cos, sin = position_embeddings
|
235 |
+
query_states, key_states = apply_rotary_pos_emb(
|
236 |
+
query_states, key_states, cos, sin
|
237 |
+
)
|
238 |
+
|
239 |
+
# Handle past key values
|
240 |
+
if past_key_value is not None:
|
241 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
242 |
+
key_states, value_states = past_key_value.update(
|
243 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
244 |
+
)
|
245 |
+
|
246 |
+
# Repeat key/value for grouped query attention
|
247 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
248 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
249 |
+
|
250 |
+
# Compute attention
|
251 |
+
attn_weights = torch.matmul(
|
252 |
+
query_states, key_states.transpose(2, 3)
|
253 |
+
) / math.sqrt(self.head_dim)
|
254 |
+
|
255 |
+
if attention_mask is not None:
|
256 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
257 |
+
attn_weights = attn_weights + causal_mask
|
258 |
+
|
259 |
+
# Apply softmax and dropout
|
260 |
+
attn_weights = nn.functional.softmax(
|
261 |
+
attn_weights, dim=-1, dtype=torch.float32
|
262 |
+
).to(query_states.dtype)
|
263 |
+
attn_weights = nn.functional.dropout(
|
264 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
265 |
+
)
|
266 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
267 |
+
|
268 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
269 |
+
raise ValueError(
|
270 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
271 |
+
f" {attn_output.size()}"
|
272 |
+
)
|
273 |
+
|
274 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
275 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
276 |
+
attn_output = self.o_proj(attn_output)
|
277 |
+
|
278 |
+
if not output_attentions:
|
279 |
+
attn_weights = None
|
280 |
+
|
281 |
+
return attn_output, attn_weights, past_key_value
|
282 |
+
|
283 |
+
|
284 |
+
def fixed_cross_entropy(
|
285 |
+
source,
|
286 |
+
target,
|
287 |
+
num_items_in_batch: int = None,
|
288 |
+
ignore_index: int = -100,
|
289 |
+
**kwargs,
|
290 |
+
):
|
291 |
+
reduction = "sum" if num_items_in_batch is not None else "mean"
|
292 |
+
loss = nn.functional.cross_entropy(
|
293 |
+
source, target, ignore_index=ignore_index, reduction=reduction
|
294 |
+
)
|
295 |
+
if reduction == "sum":
|
296 |
+
loss = loss / num_items_in_batch
|
297 |
+
return loss
|
298 |
+
|
299 |
+
|
300 |
+
class RECAST8b_llamaModel(PreTrainedModel):
|
301 |
+
config_class = RECAST8b_llama
|
302 |
+
base_model_prefix = "llama"
|
303 |
+
supports_gradient_checkpointing = True
|
304 |
+
|
305 |
+
def __init__(self, config):
|
306 |
+
super().__init__(config)
|
307 |
+
self.padding_idx = config.pad_token_id
|
308 |
+
self.vocab_size = config.vocab_size
|
309 |
+
|
310 |
+
self.embed_tokens = nn.Embedding(
|
311 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
312 |
+
)
|
313 |
+
|
314 |
+
original_config = AutoConfig.from_pretrained(
|
315 |
+
"meta-llama/Llama-3.1-8b", trust_remote_code=True
|
316 |
+
)
|
317 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
318 |
+
config=original_config,
|
319 |
+
)
|
320 |
+
|
321 |
+
# Create template banks first
|
322 |
+
self.mlp_banks = []
|
323 |
+
self.attn_banks = []
|
324 |
+
layers_per_group = config.num_hidden_layers // config.num_groups
|
325 |
+
# Explicitly calculate coef_width if not provided in config
|
326 |
+
if hasattr(config, "coef_width") and config.coef_width is not None:
|
327 |
+
coef_width = config.coef_width
|
328 |
+
else:
|
329 |
+
coef_width = config.coef_height * layers_per_group
|
330 |
+
config.coef_width = coef_width
|
331 |
+
print(
|
332 |
+
f"Model config: num_groups={config.num_groups}, layers_per_group={layers_per_group}"
|
333 |
+
)
|
334 |
+
print(f"Coefficient shape: ({config.coef_height}, {config.coef_width})")
|
335 |
+
mlp_banks = nn.ModuleList(
|
336 |
+
[
|
337 |
+
MLPTemplateBank(
|
338 |
+
config=config, coef_rows=config.coef_height, coef_columns=coef_width
|
339 |
+
)
|
340 |
+
for _ in range(config.num_groups)
|
341 |
+
]
|
342 |
+
)
|
343 |
+
|
344 |
+
attn_banks = nn.ModuleList(
|
345 |
+
[
|
346 |
+
AttTemplateBank(
|
347 |
+
config=config, coef_rows=config.coef_height, coef_columns=coef_width
|
348 |
+
)
|
349 |
+
for _ in range(config.num_groups)
|
350 |
+
]
|
351 |
+
)
|
352 |
+
self.mlp_banks = mlp_banks
|
353 |
+
self.attn_banks = attn_banks
|
354 |
+
# Create layers using LlamaDecoderLayer but replace MLPs
|
355 |
+
self.layers = nn.ModuleList()
|
356 |
+
for layer_idx in range(config.num_hidden_layers):
|
357 |
+
# Create standard LlamaDecoderLayer
|
358 |
+
decoder_layer = LlamaDecoderLayer(config, layer_idx)
|
359 |
+
|
360 |
+
# Replace its MLP with our SharedLlamaMLP
|
361 |
+
group_idx = layer_idx // layers_per_group
|
362 |
+
decoder_layer.mlp = SharedLlamaMLP(config, self.mlp_banks[group_idx])
|
363 |
+
decoder_layer.self_attn = SharedLlamaAttention(
|
364 |
+
config, layer_idx, self.attn_banks[group_idx]
|
365 |
+
)
|
366 |
+
|
367 |
+
self.layers.append(decoder_layer)
|
368 |
+
|
369 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
370 |
+
self.gradient_checkpointing = False
|
371 |
+
|
372 |
+
def forward(
|
373 |
+
self,
|
374 |
+
input_ids: torch.LongTensor = None,
|
375 |
+
attention_mask: Optional[torch.Tensor] = None,
|
376 |
+
position_ids: Optional[torch.LongTensor] = None,
|
377 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
378 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
379 |
+
use_cache: Optional[bool] = None,
|
380 |
+
output_attentions: Optional[bool] = None,
|
381 |
+
output_hidden_states: Optional[bool] = None,
|
382 |
+
return_dict: Optional[bool] = None,
|
383 |
+
cache_position: Optional[torch.LongTensor] = None,
|
384 |
+
**flash_attn_kwargs,
|
385 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
386 |
+
output_attentions = (
|
387 |
+
output_attentions
|
388 |
+
if output_attentions is not None
|
389 |
+
else self.config.output_attentions
|
390 |
+
)
|
391 |
+
output_hidden_states = (
|
392 |
+
output_hidden_states
|
393 |
+
if output_hidden_states is not None
|
394 |
+
else self.config.output_hidden_states
|
395 |
+
)
|
396 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
397 |
+
return_dict = (
|
398 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
399 |
+
)
|
400 |
+
|
401 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
402 |
+
raise ValueError(
|
403 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
404 |
+
)
|
405 |
+
|
406 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
407 |
+
logger.warning_once(
|
408 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
409 |
+
)
|
410 |
+
use_cache = False
|
411 |
+
|
412 |
+
if inputs_embeds is None:
|
413 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
414 |
+
# Set up cache position if not provided
|
415 |
+
if cache_position is None:
|
416 |
+
past_seen_tokens = (
|
417 |
+
0
|
418 |
+
if past_key_values is None
|
419 |
+
else (
|
420 |
+
past_key_values.get_seq_length()
|
421 |
+
if isinstance(past_key_values, Cache)
|
422 |
+
else past_key_values[0][0].size(-2) if past_key_values else 0
|
423 |
+
)
|
424 |
+
)
|
425 |
+
cache_position = torch.arange(
|
426 |
+
past_seen_tokens,
|
427 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
428 |
+
device=inputs_embeds.device,
|
429 |
+
)
|
430 |
+
# Create position embeddings to be shared across the decoder layers
|
431 |
+
# Set up position IDs if not provided
|
432 |
+
if position_ids is None:
|
433 |
+
position_ids = cache_position.unsqueeze(0)
|
434 |
+
# Get updated causal mask
|
435 |
+
causal_mask = self._update_causal_mask(
|
436 |
+
attention_mask,
|
437 |
+
inputs_embeds,
|
438 |
+
cache_position,
|
439 |
+
past_key_values,
|
440 |
+
output_attentions,
|
441 |
+
)
|
442 |
+
hidden_states = inputs_embeds
|
443 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
444 |
+
|
445 |
+
# Initialize outputs
|
446 |
+
all_hidden_states = () if output_hidden_states else None
|
447 |
+
all_self_attns = () if output_attentions else None
|
448 |
+
next_decoder_cache = None
|
449 |
+
|
450 |
+
# Process through layers
|
451 |
+
for decoder_layer in self.layers:
|
452 |
+
if output_hidden_states:
|
453 |
+
all_hidden_states += (hidden_states,)
|
454 |
+
|
455 |
+
if self.gradient_checkpointing and self.training:
|
456 |
+
layer_outputs = self._gradient_checkpointing_func(
|
457 |
+
decoder_layer.__call__,
|
458 |
+
hidden_states,
|
459 |
+
causal_mask,
|
460 |
+
position_ids,
|
461 |
+
past_key_values,
|
462 |
+
output_attentions,
|
463 |
+
use_cache,
|
464 |
+
position_embeddings,
|
465 |
+
)
|
466 |
+
else:
|
467 |
+
layer_outputs = decoder_layer(
|
468 |
+
hidden_states,
|
469 |
+
attention_mask=causal_mask,
|
470 |
+
position_ids=position_ids,
|
471 |
+
past_key_value=past_key_values,
|
472 |
+
output_attentions=output_attentions,
|
473 |
+
use_cache=use_cache,
|
474 |
+
position_embeddings=position_embeddings,
|
475 |
+
**flash_attn_kwargs,
|
476 |
+
)
|
477 |
+
|
478 |
+
hidden_states = layer_outputs[0]
|
479 |
+
|
480 |
+
if use_cache:
|
481 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
482 |
+
|
483 |
+
if output_attentions:
|
484 |
+
all_self_attns += (layer_outputs[1],)
|
485 |
+
|
486 |
+
# Final layer norm
|
487 |
+
hidden_states = self.norm(hidden_states)
|
488 |
+
|
489 |
+
# Add last hidden state
|
490 |
+
if output_hidden_states:
|
491 |
+
all_hidden_states += (hidden_states,)
|
492 |
+
|
493 |
+
next_cache = next_decoder_cache if use_cache else None
|
494 |
+
|
495 |
+
if not return_dict:
|
496 |
+
return tuple(
|
497 |
+
v
|
498 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
499 |
+
if v is not None
|
500 |
+
)
|
501 |
+
|
502 |
+
return BaseModelOutputWithPast(
|
503 |
+
last_hidden_state=hidden_states,
|
504 |
+
past_key_values=next_cache,
|
505 |
+
hidden_states=all_hidden_states,
|
506 |
+
attentions=all_self_attns,
|
507 |
+
)
|
508 |
+
|
509 |
+
@classmethod
|
510 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
511 |
+
if isinstance(
|
512 |
+
pretrained_model_name_or_path, str
|
513 |
+
) and pretrained_model_name_or_path.endswith(".pt"):
|
514 |
+
print("Loading from local checkpoint")
|
515 |
+
# Load from local checkpoint
|
516 |
+
config = kwargs.get("config", None)
|
517 |
+
if config is None:
|
518 |
+
config = AutoConfig.from_pretrained(
|
519 |
+
pretrained_model_name_or_path, trust_remote_code=True
|
520 |
+
)
|
521 |
+
|
522 |
+
model = cls(config)
|
523 |
+
checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
|
524 |
+
state_dict = checkpoint["model_state_dict"]
|
525 |
+
logger.info(
|
526 |
+
f"Loaded checkpoint from epoch {checkpoint.get('epoch')} with loss {checkpoint.get('loss')}"
|
527 |
+
)
|
528 |
+
|
529 |
+
missing_keys, unexpected_keys = model.load_state_dict(
|
530 |
+
state_dict, strict=False
|
531 |
+
)
|
532 |
+
|
533 |
+
if len(missing_keys) > 0:
|
534 |
+
logger.warning(f"Missing keys: {missing_keys}")
|
535 |
+
if len(unexpected_keys) > 0:
|
536 |
+
logger.warning(f"Unexpected keys: {unexpected_keys}")
|
537 |
+
|
538 |
+
return model
|
539 |
+
else:
|
540 |
+
print("Loading from hub")
|
541 |
+
# Load from hub using parent's from_pretrained
|
542 |
+
return super().from_pretrained(
|
543 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
544 |
+
)
|
545 |
+
|
546 |
+
def get_input_embeddings(self):
|
547 |
+
return self.embed_tokens
|
548 |
+
|
549 |
+
def set_input_embeddings(self, value):
|
550 |
+
self.embed_tokens = value
|
551 |
+
|
552 |
+
def _update_causal_mask(
|
553 |
+
self,
|
554 |
+
attention_mask: torch.Tensor,
|
555 |
+
input_tensor: torch.Tensor,
|
556 |
+
cache_position: torch.Tensor,
|
557 |
+
past_key_values: Cache,
|
558 |
+
output_attentions: bool,
|
559 |
+
):
|
560 |
+
if self.config._attn_implementation == "flash_attention_2":
|
561 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
562 |
+
return attention_mask
|
563 |
+
return None
|
564 |
+
|
565 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
566 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
567 |
+
# to infer the attention mask.
|
568 |
+
past_seen_tokens = (
|
569 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
570 |
+
)
|
571 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
572 |
+
|
573 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
574 |
+
if (
|
575 |
+
self.config._attn_implementation == "sdpa"
|
576 |
+
and not using_static_cache
|
577 |
+
and not output_attentions
|
578 |
+
):
|
579 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
580 |
+
attention_mask,
|
581 |
+
inputs_embeds=input_tensor,
|
582 |
+
past_key_values_length=past_seen_tokens,
|
583 |
+
is_training=self.training,
|
584 |
+
):
|
585 |
+
return None
|
586 |
+
|
587 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
588 |
+
sequence_length = input_tensor.shape[1]
|
589 |
+
if using_static_cache:
|
590 |
+
target_length = past_key_values.get_max_cache_shape()
|
591 |
+
else:
|
592 |
+
target_length = (
|
593 |
+
attention_mask.shape[-1]
|
594 |
+
if isinstance(attention_mask, torch.Tensor)
|
595 |
+
else past_seen_tokens + sequence_length + 1
|
596 |
+
)
|
597 |
+
|
598 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
599 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
600 |
+
attention_mask,
|
601 |
+
sequence_length=sequence_length,
|
602 |
+
target_length=target_length,
|
603 |
+
dtype=dtype,
|
604 |
+
device=device,
|
605 |
+
cache_position=cache_position,
|
606 |
+
batch_size=input_tensor.shape[0],
|
607 |
+
)
|
608 |
+
|
609 |
+
if (
|
610 |
+
self.config._attn_implementation == "sdpa"
|
611 |
+
and attention_mask is not None
|
612 |
+
and attention_mask.device.type == "cuda"
|
613 |
+
and not output_attentions
|
614 |
+
):
|
615 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
616 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
617 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
618 |
+
min_dtype = torch.finfo(dtype).min
|
619 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
620 |
+
causal_mask, min_dtype
|
621 |
+
)
|
622 |
+
|
623 |
+
return causal_mask
|
624 |
+
|
625 |
+
@staticmethod
|
626 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
627 |
+
attention_mask: torch.Tensor,
|
628 |
+
sequence_length: int,
|
629 |
+
target_length: int,
|
630 |
+
dtype: torch.dtype,
|
631 |
+
device: torch.device,
|
632 |
+
cache_position: torch.Tensor,
|
633 |
+
batch_size: int,
|
634 |
+
**kwargs,
|
635 |
+
):
|
636 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
637 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
638 |
+
causal_mask = attention_mask
|
639 |
+
else:
|
640 |
+
min_dtype = torch.finfo(dtype).min
|
641 |
+
causal_mask = torch.full(
|
642 |
+
(sequence_length, target_length),
|
643 |
+
fill_value=min_dtype,
|
644 |
+
dtype=dtype,
|
645 |
+
device=device,
|
646 |
+
)
|
647 |
+
if sequence_length != 1:
|
648 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
649 |
+
causal_mask *= torch.arange(
|
650 |
+
target_length, device=device
|
651 |
+
) > cache_position.reshape(-1, 1)
|
652 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
653 |
+
if attention_mask is not None:
|
654 |
+
causal_mask = (
|
655 |
+
causal_mask.clone()
|
656 |
+
) # copy to contiguous memory for in-place edit
|
657 |
+
mask_length = attention_mask.shape[-1]
|
658 |
+
padding_mask = (
|
659 |
+
causal_mask[:, :, :, :mask_length]
|
660 |
+
+ attention_mask[:, None, None, :]
|
661 |
+
)
|
662 |
+
padding_mask = padding_mask == 0
|
663 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
664 |
+
:, :, :, :mask_length
|
665 |
+
].masked_fill(padding_mask, min_dtype)
|
666 |
+
|
667 |
+
return causal_mask
|
668 |
+
|
669 |
+
|
670 |
+
class RECAST8b_LlamaForCausalLM(PreTrainedModel, GenerationMixin):
|
671 |
+
_tied_weights_keys = ["lm_head.weight"]
|
672 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
673 |
+
config_class = RECAST8b_llama
|
674 |
+
base_model_prefix = "llama"
|
675 |
+
supports_gradient_checkpointing = True
|
676 |
+
|
677 |
+
def __init__(self, config):
|
678 |
+
super().__init__(config)
|
679 |
+
self.model = RECAST8b_llamaModel(config)
|
680 |
+
self.vocab_size = config.vocab_size
|
681 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
682 |
+
|
683 |
+
# Initialize weights and apply final processing
|
684 |
+
self.post_init()
|
685 |
+
|
686 |
+
def get_input_embeddings(self):
|
687 |
+
return self.model.embed_tokens
|
688 |
+
|
689 |
+
def set_input_embeddings(self, value):
|
690 |
+
self.model.embed_tokens = value
|
691 |
+
|
692 |
+
def get_output_embeddings(self):
|
693 |
+
return self.lm_head
|
694 |
+
|
695 |
+
def set_output_embeddings(self, new_embeddings):
|
696 |
+
self.lm_head = new_embeddings
|
697 |
+
|
698 |
+
def set_decoder(self, decoder):
|
699 |
+
self.model = decoder
|
700 |
+
|
701 |
+
def get_decoder(self):
|
702 |
+
return self.model
|
703 |
+
|
704 |
+
def loss_function(
|
705 |
+
self,
|
706 |
+
logits,
|
707 |
+
labels,
|
708 |
+
vocab_size: int,
|
709 |
+
num_items_in_batch: int = None,
|
710 |
+
ignore_index: int = -100,
|
711 |
+
**kwargs,
|
712 |
+
):
|
713 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
714 |
+
logits = logits.float()
|
715 |
+
# Shift so that tokens < n predict n
|
716 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
717 |
+
shift_labels = labels[..., 1:].contiguous()
|
718 |
+
# Flatten the tokens
|
719 |
+
shift_logits = shift_logits.view(-1, vocab_size)
|
720 |
+
shift_labels = shift_labels.view(-1)
|
721 |
+
# Enable model parallelism
|
722 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
723 |
+
loss = fixed_cross_entropy(
|
724 |
+
shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs
|
725 |
+
)
|
726 |
+
return loss
|
727 |
+
|
728 |
+
def forward(
|
729 |
+
self,
|
730 |
+
input_ids: torch.LongTensor = None,
|
731 |
+
attention_mask: Optional[torch.Tensor] = None,
|
732 |
+
position_ids: Optional[torch.LongTensor] = None,
|
733 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
734 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
735 |
+
labels: Optional[torch.LongTensor] = None,
|
736 |
+
use_cache: Optional[bool] = None,
|
737 |
+
output_attentions: Optional[bool] = None,
|
738 |
+
output_hidden_states: Optional[bool] = None,
|
739 |
+
return_dict: Optional[bool] = None,
|
740 |
+
cache_position: Optional[torch.LongTensor] = None,
|
741 |
+
num_logits_to_keep: int = 0,
|
742 |
+
**kwargs,
|
743 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
744 |
+
"""
|
745 |
+
Args:
|
746 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
747 |
+
Labels for computing the masked language modeling loss. Indices should be in
|
748 |
+
`[0, ..., config.vocab_size]` or -100 (masked tokens).
|
749 |
+
num_logits_to_keep (`int`, *optional*):
|
750 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate all logits.
|
751 |
+
"""
|
752 |
+
output_attentions = (
|
753 |
+
output_attentions
|
754 |
+
if output_attentions is not None
|
755 |
+
else self.config.output_attentions
|
756 |
+
)
|
757 |
+
output_hidden_states = (
|
758 |
+
output_hidden_states
|
759 |
+
if output_hidden_states is not None
|
760 |
+
else self.config.output_hidden_states
|
761 |
+
)
|
762 |
+
return_dict = (
|
763 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
764 |
+
)
|
765 |
+
|
766 |
+
outputs = self.model(
|
767 |
+
input_ids=input_ids,
|
768 |
+
attention_mask=attention_mask,
|
769 |
+
position_ids=position_ids,
|
770 |
+
past_key_values=past_key_values,
|
771 |
+
inputs_embeds=inputs_embeds,
|
772 |
+
use_cache=use_cache,
|
773 |
+
output_attentions=output_attentions,
|
774 |
+
output_hidden_states=output_hidden_states,
|
775 |
+
return_dict=return_dict,
|
776 |
+
cache_position=cache_position,
|
777 |
+
**kwargs,
|
778 |
+
)
|
779 |
+
|
780 |
+
hidden_states = outputs[0]
|
781 |
+
# Only compute necessary logits
|
782 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
783 |
+
|
784 |
+
loss = None
|
785 |
+
if labels is not None:
|
786 |
+
# Calculate batch size for loss function
|
787 |
+
num_items_in_batch = (
|
788 |
+
input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
|
789 |
+
)
|
790 |
+
loss = self.loss_function(
|
791 |
+
logits=logits,
|
792 |
+
labels=labels,
|
793 |
+
vocab_size=self.config.vocab_size,
|
794 |
+
num_items_in_batch=num_items_in_batch,
|
795 |
+
**kwargs,
|
796 |
+
)
|
797 |
+
|
798 |
+
if not return_dict:
|
799 |
+
output = (logits,) + outputs[1:]
|
800 |
+
return (loss,) + output if loss is not None else output
|
801 |
+
|
802 |
+
return CausalLMOutputWithPast(
|
803 |
+
loss=loss,
|
804 |
+
logits=logits,
|
805 |
+
past_key_values=outputs.past_key_values,
|
806 |
+
hidden_states=outputs.hidden_states,
|
807 |
+
attentions=outputs.attentions,
|
808 |
+
)
|
809 |
+
|
810 |
+
def prepare_inputs_for_generation(
|
811 |
+
self,
|
812 |
+
input_ids,
|
813 |
+
past_key_values=None,
|
814 |
+
attention_mask=None,
|
815 |
+
inputs_embeds=None,
|
816 |
+
**kwargs,
|
817 |
+
):
|
818 |
+
if past_key_values:
|
819 |
+
input_ids = input_ids[:, -1:]
|
820 |
+
|
821 |
+
position_ids = kwargs.get("position_ids", None)
|
822 |
+
if attention_mask is not None and position_ids is None:
|
823 |
+
# create position_ids on the fly for batch generation
|
824 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
825 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
826 |
+
if past_key_values:
|
827 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
828 |
+
|
829 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
830 |
+
if inputs_embeds is not None and past_key_values is None:
|
831 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
832 |
+
else:
|
833 |
+
model_inputs = {"input_ids": input_ids}
|
834 |
+
|
835 |
+
model_inputs.update(
|
836 |
+
{
|
837 |
+
"position_ids": position_ids,
|
838 |
+
"past_key_values": past_key_values,
|
839 |
+
"use_cache": kwargs.get("use_cache"),
|
840 |
+
"attention_mask": attention_mask,
|
841 |
+
}
|
842 |
+
)
|
843 |
+
return model_inputs
|
844 |
+
|
845 |
+
@classmethod
|
846 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
847 |
+
if isinstance(
|
848 |
+
pretrained_model_name_or_path, str
|
849 |
+
) and pretrained_model_name_or_path.endswith(".pt"):
|
850 |
+
print("Loading from local checkpoint")
|
851 |
+
config = kwargs.get("config", None)
|
852 |
+
if config is None:
|
853 |
+
config = AutoConfig.from_pretrained(
|
854 |
+
pretrained_model_name_or_path, trust_remote_code=True
|
855 |
+
)
|
856 |
+
model = torch.load(pretrained_model_name_or_path, map_location="cpu")
|
857 |
+
# model = cls(config)
|
858 |
+
# checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
|
859 |
+
# state_dict = checkpoint["model_state_dict"]
|
860 |
+
|
861 |
+
# missing_keys, unexpected_keys = model.load_state_dict(
|
862 |
+
# state_dict, strict=False
|
863 |
+
# )
|
864 |
+
|
865 |
+
# if len(missing_keys) > 0:
|
866 |
+
# logger.warning(f"Missing keys: {missing_keys}")
|
867 |
+
# if len(unexpected_keys) > 0:
|
868 |
+
# logger.warning(f"Unexpected keys: {unexpected_keys}")
|
869 |
+
|
870 |
+
return model
|
871 |
+
else:
|
872 |
+
print("Loading from hub")
|
873 |
+
return super().from_pretrained(
|
874 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
875 |
+
)
|