File size: 3,581 Bytes
bfd0b10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen3-8B-Base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9e863409-5502-4d0b-9027-9eff9972345a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
adapter: lora
base_model: Qwen/Qwen3-8B-Base
bf16: true
chat_template: llama3
datasets:
- data_files:
- a4d38a814b208fbf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: apriasmoro/9e863409-5502-4d0b-9027-9eff9972345a
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 3483
micro_batch_size: 4
mlflow_experiment_name: /tmp/a4d38a814b208fbf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 348
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 32391185-cb4f-4ffe-b8f6-62504519c53c
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: 32391185-cb4f-4ffe-b8f6-62504519c53c
warmup_steps: 100
weight_decay: 0.01
```
</details><br>
# 9e863409-5502-4d0b-9027-9eff9972345a
This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4513
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 3483
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| No log | 0.0096 | 1 | 1.0573 |
| 0.0774 | 5.5865 | 581 | 0.2366 |
| 0.0054 | 11.1731 | 1162 | 0.3158 |
| 0.0016 | 16.7596 | 1743 | 0.3904 |
| 0.0002 | 22.3462 | 2324 | 0.4352 |
| 0.0001 | 27.9327 | 2905 | 0.4513 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1 |