--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen3-8B-Base tags: - axolotl - generated_from_trainer model-index: - name: 9e863409-5502-4d0b-9027-9eff9972345a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: Qwen/Qwen3-8B-Base bf16: true chat_template: llama3 datasets: - data_files: - a4d38a814b208fbf_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_max_new_tokens: 256 evals_per_epoch: 2 flash_attention: false fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: true hub_model_id: apriasmoro/9e863409-5502-4d0b-9027-9eff9972345a learning_rate: 0.0002 logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 3483 micro_batch_size: 4 mlflow_experiment_name: /tmp/a4d38a814b208fbf_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true sample_packing: false save_steps: 348 sequence_len: 2048 tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 32391185-cb4f-4ffe-b8f6-62504519c53c wandb_project: Gradients-On-Demand wandb_run: apriasmoro wandb_runid: 32391185-cb4f-4ffe-b8f6-62504519c53c warmup_steps: 100 weight_decay: 0.01 ```

# 9e863409-5502-4d0b-9027-9eff9972345a This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 3483 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | No log | 0.0096 | 1 | 1.0573 | | 0.0774 | 5.5865 | 581 | 0.2366 | | 0.0054 | 11.1731 | 1162 | 0.3158 | | 0.0016 | 16.7596 | 1743 | 0.3904 | | 0.0002 | 22.3462 | 2324 | 0.4352 | | 0.0001 | 27.9327 | 2905 | 0.4513 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1