End of training
Browse files- README.md +2 -0
- all_results.json +16 -12
- eval_results.json +8 -8
- predict_results.txt +110 -110
- runs/May15_17-27-18_indolem-petl-vm/events.out.tfevents.1715796187.indolem-petl-vm.579186.1 +3 -0
- test_results.json +6 -0
- train_results.json +4 -4
- trainer_state.json +206 -206
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
base_model: indolem/indobert-base-uncased
|
4 |
tags:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: mit
|
5 |
base_model: indolem/indobert-base-uncased
|
6 |
tags:
|
all_results.json
CHANGED
@@ -1,17 +1,21 @@
|
|
1 |
{
|
|
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
-
"
|
13 |
-
"
|
|
|
|
|
|
|
14 |
"train_samples": 3638,
|
15 |
-
"train_samples_per_second":
|
16 |
-
"train_steps_per_second":
|
17 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.8615232443125618,
|
3 |
"epoch": 20.0,
|
4 |
+
"eval_accuracy": 0.8546365914786967,
|
5 |
+
"eval_f1": 0.8263655462184873,
|
6 |
+
"eval_loss": 0.35401326417922974,
|
7 |
+
"eval_precision": 0.8233396753671443,
|
8 |
+
"eval_recall": 0.8296508456082925,
|
9 |
+
"eval_runtime": 5.0488,
|
10 |
"eval_samples": 399,
|
11 |
+
"eval_samples_per_second": 79.029,
|
12 |
+
"eval_steps_per_second": 9.903,
|
13 |
+
"f1": 0.8344251555846709,
|
14 |
+
"precision": 0.8325509007667684,
|
15 |
+
"recall": 0.8363917467548971,
|
16 |
+
"train_loss": 0.35800845193081215,
|
17 |
+
"train_runtime": 2113.1391,
|
18 |
"train_samples": 3638,
|
19 |
+
"train_samples_per_second": 34.432,
|
20 |
+
"train_steps_per_second": 1.155
|
21 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.8546365914786967,
|
4 |
+
"eval_f1": 0.8263655462184873,
|
5 |
+
"eval_loss": 0.35401326417922974,
|
6 |
+
"eval_precision": 0.8233396753671443,
|
7 |
+
"eval_recall": 0.8296508456082925,
|
8 |
+
"eval_runtime": 5.0488,
|
9 |
"eval_samples": 399,
|
10 |
+
"eval_samples_per_second": 79.029,
|
11 |
+
"eval_steps_per_second": 9.903
|
12 |
}
|
predict_results.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
index prediction
|
2 |
0 1
|
3 |
-
1
|
4 |
2 1
|
5 |
3 1
|
6 |
4 0
|
@@ -14,21 +14,21 @@ index prediction
|
|
14 |
12 1
|
15 |
13 1
|
16 |
14 1
|
17 |
-
15
|
18 |
16 1
|
19 |
17 1
|
20 |
18 1
|
21 |
19 1
|
22 |
20 1
|
23 |
21 1
|
24 |
-
22
|
25 |
23 1
|
26 |
-
24
|
27 |
25 1
|
28 |
26 1
|
29 |
27 1
|
30 |
28 1
|
31 |
-
29
|
32 |
30 1
|
33 |
31 1
|
34 |
32 1
|
@@ -38,39 +38,39 @@ index prediction
|
|
38 |
36 1
|
39 |
37 1
|
40 |
38 1
|
41 |
-
39
|
42 |
40 1
|
43 |
-
41
|
44 |
-
42
|
45 |
-
43
|
46 |
-
44
|
47 |
-
45
|
48 |
46 1
|
49 |
47 1
|
50 |
48 1
|
51 |
49 0
|
52 |
50 1
|
53 |
51 1
|
54 |
-
52
|
55 |
53 1
|
56 |
54 1
|
57 |
55 1
|
58 |
-
56
|
59 |
57 0
|
60 |
58 1
|
61 |
59 1
|
62 |
-
60
|
63 |
61 1
|
64 |
62 1
|
65 |
63 1
|
66 |
-
64
|
67 |
65 1
|
68 |
66 1
|
69 |
67 1
|
70 |
68 1
|
71 |
69 1
|
72 |
70 1
|
73 |
-
71
|
74 |
72 1
|
75 |
73 1
|
76 |
74 1
|
@@ -79,31 +79,31 @@ index prediction
|
|
79 |
77 0
|
80 |
78 1
|
81 |
79 1
|
82 |
-
80
|
83 |
-
81
|
84 |
82 1
|
85 |
83 1
|
86 |
84 1
|
87 |
85 0
|
88 |
-
86
|
89 |
87 1
|
90 |
88 1
|
91 |
89 1
|
92 |
90 1
|
93 |
-
91
|
94 |
-
92
|
95 |
-
93
|
96 |
94 1
|
97 |
95 1
|
98 |
96 1
|
99 |
97 0
|
100 |
-
98
|
101 |
99 0
|
102 |
100 0
|
103 |
101 0
|
104 |
102 1
|
105 |
103 1
|
106 |
-
104
|
107 |
105 1
|
108 |
106 1
|
109 |
107 1
|
@@ -112,7 +112,7 @@ index prediction
|
|
112 |
110 1
|
113 |
111 1
|
114 |
112 1
|
115 |
-
113
|
116 |
114 1
|
117 |
115 1
|
118 |
116 1
|
@@ -124,7 +124,7 @@ index prediction
|
|
124 |
122 1
|
125 |
123 1
|
126 |
124 1
|
127 |
-
125
|
128 |
126 1
|
129 |
127 1
|
130 |
128 1
|
@@ -134,7 +134,7 @@ index prediction
|
|
134 |
132 1
|
135 |
133 1
|
136 |
134 1
|
137 |
-
135
|
138 |
136 0
|
139 |
137 1
|
140 |
138 1
|
@@ -146,7 +146,7 @@ index prediction
|
|
146 |
144 1
|
147 |
145 1
|
148 |
146 1
|
149 |
-
147
|
150 |
148 1
|
151 |
149 1
|
152 |
150 1
|
@@ -163,24 +163,24 @@ index prediction
|
|
163 |
161 1
|
164 |
162 1
|
165 |
163 1
|
166 |
-
164
|
167 |
165 0
|
168 |
166 1
|
169 |
167 1
|
170 |
-
168
|
171 |
-
169
|
172 |
170 1
|
173 |
171 1
|
174 |
-
172
|
175 |
173 0
|
176 |
-
174
|
177 |
175 1
|
178 |
-
176
|
179 |
177 0
|
180 |
178 1
|
181 |
179 1
|
182 |
180 1
|
183 |
-
181
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
@@ -189,7 +189,7 @@ index prediction
|
|
189 |
187 1
|
190 |
188 1
|
191 |
189 1
|
192 |
-
190
|
193 |
191 1
|
194 |
192 1
|
195 |
193 1
|
@@ -217,22 +217,22 @@ index prediction
|
|
217 |
215 1
|
218 |
216 0
|
219 |
217 0
|
220 |
-
218
|
221 |
219 1
|
222 |
220 0
|
223 |
221 1
|
224 |
222 1
|
225 |
223 1
|
226 |
-
224
|
227 |
225 1
|
228 |
226 0
|
229 |
227 0
|
230 |
-
228
|
231 |
-
229
|
232 |
230 1
|
233 |
231 1
|
234 |
-
232
|
235 |
-
233
|
236 |
234 1
|
237 |
235 1
|
238 |
236 1
|
@@ -248,7 +248,7 @@ index prediction
|
|
248 |
246 0
|
249 |
247 1
|
250 |
248 1
|
251 |
-
249
|
252 |
250 0
|
253 |
251 1
|
254 |
252 1
|
@@ -260,19 +260,19 @@ index prediction
|
|
260 |
258 1
|
261 |
259 1
|
262 |
260 1
|
263 |
-
261
|
264 |
262 1
|
265 |
263 1
|
266 |
264 1
|
267 |
-
265
|
268 |
266 1
|
269 |
267 1
|
270 |
268 1
|
271 |
269 1
|
272 |
270 1
|
273 |
271 1
|
274 |
-
272
|
275 |
-
273
|
276 |
274 1
|
277 |
275 1
|
278 |
276 1
|
@@ -292,11 +292,11 @@ index prediction
|
|
292 |
290 1
|
293 |
291 1
|
294 |
292 1
|
295 |
-
293
|
296 |
294 1
|
297 |
295 1
|
298 |
296 1
|
299 |
-
297
|
300 |
298 0
|
301 |
299 0
|
302 |
300 0
|
@@ -313,9 +313,9 @@ index prediction
|
|
313 |
311 0
|
314 |
312 0
|
315 |
313 0
|
316 |
-
314
|
317 |
315 0
|
318 |
-
316
|
319 |
317 0
|
320 |
318 1
|
321 |
319 0
|
@@ -327,30 +327,30 @@ index prediction
|
|
327 |
325 0
|
328 |
326 0
|
329 |
327 0
|
330 |
-
328
|
331 |
329 0
|
332 |
-
330
|
333 |
-
331
|
334 |
332 0
|
335 |
333 0
|
336 |
334 0
|
337 |
335 0
|
338 |
336 0
|
339 |
337 0
|
340 |
-
338
|
341 |
339 0
|
342 |
340 0
|
343 |
341 0
|
344 |
342 0
|
345 |
343 0
|
346 |
-
344
|
347 |
345 0
|
348 |
-
346
|
349 |
347 0
|
350 |
348 0
|
351 |
349 0
|
352 |
350 0
|
353 |
-
351
|
354 |
352 0
|
355 |
353 0
|
356 |
354 0
|
@@ -375,7 +375,7 @@ index prediction
|
|
375 |
373 0
|
376 |
374 0
|
377 |
375 0
|
378 |
-
376
|
379 |
377 0
|
380 |
378 0
|
381 |
379 0
|
@@ -397,11 +397,11 @@ index prediction
|
|
397 |
395 0
|
398 |
396 0
|
399 |
397 0
|
400 |
-
398
|
401 |
399 0
|
402 |
400 0
|
403 |
-
401
|
404 |
-
402
|
405 |
403 0
|
406 |
404 0
|
407 |
405 0
|
@@ -419,12 +419,12 @@ index prediction
|
|
419 |
417 0
|
420 |
418 0
|
421 |
419 0
|
422 |
-
420
|
423 |
-
421
|
424 |
422 0
|
425 |
423 0
|
426 |
424 0
|
427 |
-
425
|
428 |
426 0
|
429 |
427 0
|
430 |
428 0
|
@@ -438,7 +438,7 @@ index prediction
|
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
441 |
-
439
|
442 |
440 0
|
443 |
441 0
|
444 |
442 0
|
@@ -446,7 +446,7 @@ index prediction
|
|
446 |
444 0
|
447 |
445 0
|
448 |
446 0
|
449 |
-
447
|
450 |
448 0
|
451 |
449 0
|
452 |
450 0
|
@@ -454,7 +454,7 @@ index prediction
|
|
454 |
452 0
|
455 |
453 0
|
456 |
454 0
|
457 |
-
455
|
458 |
456 0
|
459 |
457 0
|
460 |
458 0
|
@@ -465,7 +465,7 @@ index prediction
|
|
465 |
463 0
|
466 |
464 0
|
467 |
465 0
|
468 |
-
466
|
469 |
467 0
|
470 |
468 0
|
471 |
469 0
|
@@ -486,12 +486,12 @@ index prediction
|
|
486 |
484 0
|
487 |
485 0
|
488 |
486 0
|
489 |
-
487
|
490 |
488 0
|
491 |
489 0
|
492 |
490 0
|
493 |
491 0
|
494 |
-
492
|
495 |
493 0
|
496 |
494 0
|
497 |
495 0
|
@@ -502,7 +502,7 @@ index prediction
|
|
502 |
500 0
|
503 |
501 0
|
504 |
502 0
|
505 |
-
503
|
506 |
504 0
|
507 |
505 0
|
508 |
506 0
|
@@ -510,7 +510,7 @@ index prediction
|
|
510 |
508 0
|
511 |
509 0
|
512 |
510 0
|
513 |
-
511
|
514 |
512 0
|
515 |
513 0
|
516 |
514 0
|
@@ -521,9 +521,9 @@ index prediction
|
|
521 |
519 0
|
522 |
520 0
|
523 |
521 0
|
524 |
-
522
|
525 |
523 0
|
526 |
-
524
|
527 |
525 0
|
528 |
526 0
|
529 |
527 0
|
@@ -533,9 +533,9 @@ index prediction
|
|
533 |
531 0
|
534 |
532 0
|
535 |
533 0
|
536 |
-
534
|
537 |
535 0
|
538 |
-
536
|
539 |
537 0
|
540 |
538 0
|
541 |
539 0
|
@@ -559,7 +559,7 @@ index prediction
|
|
559 |
557 0
|
560 |
558 0
|
561 |
559 0
|
562 |
-
560
|
563 |
561 0
|
564 |
562 0
|
565 |
563 0
|
@@ -587,20 +587,20 @@ index prediction
|
|
587 |
585 0
|
588 |
586 0
|
589 |
587 0
|
590 |
-
588
|
591 |
589 0
|
592 |
590 0
|
593 |
591 0
|
594 |
592 0
|
595 |
593 0
|
596 |
594 0
|
597 |
-
595
|
598 |
-
596
|
599 |
597 0
|
600 |
598 0
|
601 |
599 0
|
602 |
600 0
|
603 |
-
601
|
604 |
602 0
|
605 |
603 0
|
606 |
604 0
|
@@ -623,18 +623,18 @@ index prediction
|
|
623 |
621 1
|
624 |
622 0
|
625 |
623 0
|
626 |
-
624
|
627 |
625 0
|
628 |
626 0
|
629 |
627 0
|
630 |
-
628
|
631 |
629 0
|
632 |
630 0
|
633 |
631 0
|
634 |
-
632
|
635 |
633 1
|
636 |
634 0
|
637 |
-
635
|
638 |
636 0
|
639 |
637 0
|
640 |
638 0
|
@@ -653,7 +653,7 @@ index prediction
|
|
653 |
651 0
|
654 |
652 1
|
655 |
653 0
|
656 |
-
654
|
657 |
655 0
|
658 |
656 0
|
659 |
657 1
|
@@ -662,7 +662,7 @@ index prediction
|
|
662 |
660 0
|
663 |
661 0
|
664 |
662 0
|
665 |
-
663
|
666 |
664 0
|
667 |
665 0
|
668 |
666 0
|
@@ -702,7 +702,7 @@ index prediction
|
|
702 |
700 0
|
703 |
701 0
|
704 |
702 0
|
705 |
-
703
|
706 |
704 0
|
707 |
705 0
|
708 |
706 0
|
@@ -755,7 +755,7 @@ index prediction
|
|
755 |
753 0
|
756 |
754 0
|
757 |
755 0
|
758 |
-
756
|
759 |
757 0
|
760 |
758 0
|
761 |
759 0
|
@@ -764,14 +764,14 @@ index prediction
|
|
764 |
762 0
|
765 |
763 0
|
766 |
764 0
|
767 |
-
765
|
768 |
766 0
|
769 |
767 0
|
770 |
768 0
|
771 |
769 0
|
772 |
770 1
|
773 |
771 0
|
774 |
-
772
|
775 |
773 0
|
776 |
774 0
|
777 |
775 0
|
@@ -808,12 +808,12 @@ index prediction
|
|
808 |
806 0
|
809 |
807 0
|
810 |
808 0
|
811 |
-
809
|
812 |
810 0
|
813 |
811 0
|
814 |
812 0
|
815 |
813 0
|
816 |
-
814
|
817 |
815 0
|
818 |
816 0
|
819 |
817 0
|
@@ -831,7 +831,7 @@ index prediction
|
|
831 |
829 0
|
832 |
830 0
|
833 |
831 0
|
834 |
-
832
|
835 |
833 1
|
836 |
834 0
|
837 |
835 0
|
@@ -840,7 +840,7 @@ index prediction
|
|
840 |
838 0
|
841 |
839 0
|
842 |
840 0
|
843 |
-
841
|
844 |
842 0
|
845 |
843 0
|
846 |
844 0
|
@@ -867,7 +867,7 @@ index prediction
|
|
867 |
865 0
|
868 |
866 0
|
869 |
867 0
|
870 |
-
868
|
871 |
869 0
|
872 |
870 0
|
873 |
871 0
|
@@ -883,7 +883,7 @@ index prediction
|
|
883 |
881 0
|
884 |
882 0
|
885 |
883 0
|
886 |
-
884
|
887 |
885 0
|
888 |
886 0
|
889 |
887 0
|
@@ -893,10 +893,10 @@ index prediction
|
|
893 |
891 1
|
894 |
892 0
|
895 |
893 0
|
896 |
-
894
|
897 |
895 0
|
898 |
896 0
|
899 |
-
897
|
900 |
898 0
|
901 |
899 0
|
902 |
900 0
|
@@ -905,13 +905,13 @@ index prediction
|
|
905 |
903 0
|
906 |
904 0
|
907 |
905 0
|
908 |
-
906
|
909 |
907 1
|
910 |
908 0
|
911 |
909 0
|
912 |
910 0
|
913 |
911 0
|
914 |
-
912
|
915 |
913 0
|
916 |
914 0
|
917 |
915 0
|
@@ -949,20 +949,20 @@ index prediction
|
|
949 |
947 0
|
950 |
948 0
|
951 |
949 0
|
952 |
-
950
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
954 0
|
957 |
-
955
|
958 |
956 0
|
959 |
-
957
|
960 |
958 0
|
961 |
959 0
|
962 |
960 0
|
963 |
961 0
|
964 |
962 0
|
965 |
-
963
|
966 |
964 0
|
967 |
965 0
|
968 |
966 0
|
@@ -991,18 +991,18 @@ index prediction
|
|
991 |
989 0
|
992 |
990 0
|
993 |
991 1
|
994 |
-
992
|
995 |
993 0
|
996 |
994 0
|
997 |
-
995
|
998 |
996 0
|
999 |
997 0
|
1000 |
-
998
|
1001 |
999 1
|
1002 |
1000 0
|
1003 |
1001 0
|
1004 |
1002 0
|
1005 |
-
1003
|
1006 |
1004 0
|
1007 |
1005 0
|
1008 |
1006 0
|
|
|
1 |
index prediction
|
2 |
0 1
|
3 |
+
1 0
|
4 |
2 1
|
5 |
3 1
|
6 |
4 0
|
|
|
14 |
12 1
|
15 |
13 1
|
16 |
14 1
|
17 |
+
15 1
|
18 |
16 1
|
19 |
17 1
|
20 |
18 1
|
21 |
19 1
|
22 |
20 1
|
23 |
21 1
|
24 |
+
22 0
|
25 |
23 1
|
26 |
+
24 1
|
27 |
25 1
|
28 |
26 1
|
29 |
27 1
|
30 |
28 1
|
31 |
+
29 0
|
32 |
30 1
|
33 |
31 1
|
34 |
32 1
|
|
|
38 |
36 1
|
39 |
37 1
|
40 |
38 1
|
41 |
+
39 0
|
42 |
40 1
|
43 |
+
41 0
|
44 |
+
42 0
|
45 |
+
43 0
|
46 |
+
44 0
|
47 |
+
45 0
|
48 |
46 1
|
49 |
47 1
|
50 |
48 1
|
51 |
49 0
|
52 |
50 1
|
53 |
51 1
|
54 |
+
52 0
|
55 |
53 1
|
56 |
54 1
|
57 |
55 1
|
58 |
+
56 0
|
59 |
57 0
|
60 |
58 1
|
61 |
59 1
|
62 |
+
60 0
|
63 |
61 1
|
64 |
62 1
|
65 |
63 1
|
66 |
+
64 0
|
67 |
65 1
|
68 |
66 1
|
69 |
67 1
|
70 |
68 1
|
71 |
69 1
|
72 |
70 1
|
73 |
+
71 1
|
74 |
72 1
|
75 |
73 1
|
76 |
74 1
|
|
|
79 |
77 0
|
80 |
78 1
|
81 |
79 1
|
82 |
+
80 0
|
83 |
+
81 1
|
84 |
82 1
|
85 |
83 1
|
86 |
84 1
|
87 |
85 0
|
88 |
+
86 0
|
89 |
87 1
|
90 |
88 1
|
91 |
89 1
|
92 |
90 1
|
93 |
+
91 0
|
94 |
+
92 0
|
95 |
+
93 0
|
96 |
94 1
|
97 |
95 1
|
98 |
96 1
|
99 |
97 0
|
100 |
+
98 0
|
101 |
99 0
|
102 |
100 0
|
103 |
101 0
|
104 |
102 1
|
105 |
103 1
|
106 |
+
104 0
|
107 |
105 1
|
108 |
106 1
|
109 |
107 1
|
|
|
112 |
110 1
|
113 |
111 1
|
114 |
112 1
|
115 |
+
113 1
|
116 |
114 1
|
117 |
115 1
|
118 |
116 1
|
|
|
124 |
122 1
|
125 |
123 1
|
126 |
124 1
|
127 |
+
125 1
|
128 |
126 1
|
129 |
127 1
|
130 |
128 1
|
|
|
134 |
132 1
|
135 |
133 1
|
136 |
134 1
|
137 |
+
135 0
|
138 |
136 0
|
139 |
137 1
|
140 |
138 1
|
|
|
146 |
144 1
|
147 |
145 1
|
148 |
146 1
|
149 |
+
147 0
|
150 |
148 1
|
151 |
149 1
|
152 |
150 1
|
|
|
163 |
161 1
|
164 |
162 1
|
165 |
163 1
|
166 |
+
164 0
|
167 |
165 0
|
168 |
166 1
|
169 |
167 1
|
170 |
+
168 0
|
171 |
+
169 0
|
172 |
170 1
|
173 |
171 1
|
174 |
+
172 0
|
175 |
173 0
|
176 |
+
174 0
|
177 |
175 1
|
178 |
+
176 0
|
179 |
177 0
|
180 |
178 1
|
181 |
179 1
|
182 |
180 1
|
183 |
+
181 1
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
|
|
189 |
187 1
|
190 |
188 1
|
191 |
189 1
|
192 |
+
190 0
|
193 |
191 1
|
194 |
192 1
|
195 |
193 1
|
|
|
217 |
215 1
|
218 |
216 0
|
219 |
217 0
|
220 |
+
218 0
|
221 |
219 1
|
222 |
220 0
|
223 |
221 1
|
224 |
222 1
|
225 |
223 1
|
226 |
+
224 1
|
227 |
225 1
|
228 |
226 0
|
229 |
227 0
|
230 |
+
228 0
|
231 |
+
229 0
|
232 |
230 1
|
233 |
231 1
|
234 |
+
232 0
|
235 |
+
233 0
|
236 |
234 1
|
237 |
235 1
|
238 |
236 1
|
|
|
248 |
246 0
|
249 |
247 1
|
250 |
248 1
|
251 |
+
249 1
|
252 |
250 0
|
253 |
251 1
|
254 |
252 1
|
|
|
260 |
258 1
|
261 |
259 1
|
262 |
260 1
|
263 |
+
261 0
|
264 |
262 1
|
265 |
263 1
|
266 |
264 1
|
267 |
+
265 0
|
268 |
266 1
|
269 |
267 1
|
270 |
268 1
|
271 |
269 1
|
272 |
270 1
|
273 |
271 1
|
274 |
+
272 1
|
275 |
+
273 0
|
276 |
274 1
|
277 |
275 1
|
278 |
276 1
|
|
|
292 |
290 1
|
293 |
291 1
|
294 |
292 1
|
295 |
+
293 0
|
296 |
294 1
|
297 |
295 1
|
298 |
296 1
|
299 |
+
297 1
|
300 |
298 0
|
301 |
299 0
|
302 |
300 0
|
|
|
313 |
311 0
|
314 |
312 0
|
315 |
313 0
|
316 |
+
314 1
|
317 |
315 0
|
318 |
+
316 1
|
319 |
317 0
|
320 |
318 1
|
321 |
319 0
|
|
|
327 |
325 0
|
328 |
326 0
|
329 |
327 0
|
330 |
+
328 0
|
331 |
329 0
|
332 |
+
330 0
|
333 |
+
331 0
|
334 |
332 0
|
335 |
333 0
|
336 |
334 0
|
337 |
335 0
|
338 |
336 0
|
339 |
337 0
|
340 |
+
338 0
|
341 |
339 0
|
342 |
340 0
|
343 |
341 0
|
344 |
342 0
|
345 |
343 0
|
346 |
+
344 1
|
347 |
345 0
|
348 |
+
346 0
|
349 |
347 0
|
350 |
348 0
|
351 |
349 0
|
352 |
350 0
|
353 |
+
351 1
|
354 |
352 0
|
355 |
353 0
|
356 |
354 0
|
|
|
375 |
373 0
|
376 |
374 0
|
377 |
375 0
|
378 |
+
376 1
|
379 |
377 0
|
380 |
378 0
|
381 |
379 0
|
|
|
397 |
395 0
|
398 |
396 0
|
399 |
397 0
|
400 |
+
398 0
|
401 |
399 0
|
402 |
400 0
|
403 |
+
401 1
|
404 |
+
402 0
|
405 |
403 0
|
406 |
404 0
|
407 |
405 0
|
|
|
419 |
417 0
|
420 |
418 0
|
421 |
419 0
|
422 |
+
420 0
|
423 |
+
421 1
|
424 |
422 0
|
425 |
423 0
|
426 |
424 0
|
427 |
+
425 1
|
428 |
426 0
|
429 |
427 0
|
430 |
428 0
|
|
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
441 |
+
439 1
|
442 |
440 0
|
443 |
441 0
|
444 |
442 0
|
|
|
446 |
444 0
|
447 |
445 0
|
448 |
446 0
|
449 |
+
447 0
|
450 |
448 0
|
451 |
449 0
|
452 |
450 0
|
|
|
454 |
452 0
|
455 |
453 0
|
456 |
454 0
|
457 |
+
455 1
|
458 |
456 0
|
459 |
457 0
|
460 |
458 0
|
|
|
465 |
463 0
|
466 |
464 0
|
467 |
465 0
|
468 |
+
466 1
|
469 |
467 0
|
470 |
468 0
|
471 |
469 0
|
|
|
486 |
484 0
|
487 |
485 0
|
488 |
486 0
|
489 |
+
487 1
|
490 |
488 0
|
491 |
489 0
|
492 |
490 0
|
493 |
491 0
|
494 |
+
492 1
|
495 |
493 0
|
496 |
494 0
|
497 |
495 0
|
|
|
502 |
500 0
|
503 |
501 0
|
504 |
502 0
|
505 |
+
503 1
|
506 |
504 0
|
507 |
505 0
|
508 |
506 0
|
|
|
510 |
508 0
|
511 |
509 0
|
512 |
510 0
|
513 |
+
511 0
|
514 |
512 0
|
515 |
513 0
|
516 |
514 0
|
|
|
521 |
519 0
|
522 |
520 0
|
523 |
521 0
|
524 |
+
522 1
|
525 |
523 0
|
526 |
+
524 1
|
527 |
525 0
|
528 |
526 0
|
529 |
527 0
|
|
|
533 |
531 0
|
534 |
532 0
|
535 |
533 0
|
536 |
+
534 1
|
537 |
535 0
|
538 |
+
536 0
|
539 |
537 0
|
540 |
538 0
|
541 |
539 0
|
|
|
559 |
557 0
|
560 |
558 0
|
561 |
559 0
|
562 |
+
560 0
|
563 |
561 0
|
564 |
562 0
|
565 |
563 0
|
|
|
587 |
585 0
|
588 |
586 0
|
589 |
587 0
|
590 |
+
588 1
|
591 |
589 0
|
592 |
590 0
|
593 |
591 0
|
594 |
592 0
|
595 |
593 0
|
596 |
594 0
|
597 |
+
595 1
|
598 |
+
596 1
|
599 |
597 0
|
600 |
598 0
|
601 |
599 0
|
602 |
600 0
|
603 |
+
601 1
|
604 |
602 0
|
605 |
603 0
|
606 |
604 0
|
|
|
623 |
621 1
|
624 |
622 0
|
625 |
623 0
|
626 |
+
624 1
|
627 |
625 0
|
628 |
626 0
|
629 |
627 0
|
630 |
+
628 1
|
631 |
629 0
|
632 |
630 0
|
633 |
631 0
|
634 |
+
632 0
|
635 |
633 1
|
636 |
634 0
|
637 |
+
635 1
|
638 |
636 0
|
639 |
637 0
|
640 |
638 0
|
|
|
653 |
651 0
|
654 |
652 1
|
655 |
653 0
|
656 |
+
654 1
|
657 |
655 0
|
658 |
656 0
|
659 |
657 1
|
|
|
662 |
660 0
|
663 |
661 0
|
664 |
662 0
|
665 |
+
663 0
|
666 |
664 0
|
667 |
665 0
|
668 |
666 0
|
|
|
702 |
700 0
|
703 |
701 0
|
704 |
702 0
|
705 |
+
703 0
|
706 |
704 0
|
707 |
705 0
|
708 |
706 0
|
|
|
755 |
753 0
|
756 |
754 0
|
757 |
755 0
|
758 |
+
756 1
|
759 |
757 0
|
760 |
758 0
|
761 |
759 0
|
|
|
764 |
762 0
|
765 |
763 0
|
766 |
764 0
|
767 |
+
765 1
|
768 |
766 0
|
769 |
767 0
|
770 |
768 0
|
771 |
769 0
|
772 |
770 1
|
773 |
771 0
|
774 |
+
772 1
|
775 |
773 0
|
776 |
774 0
|
777 |
775 0
|
|
|
808 |
806 0
|
809 |
807 0
|
810 |
808 0
|
811 |
+
809 1
|
812 |
810 0
|
813 |
811 0
|
814 |
812 0
|
815 |
813 0
|
816 |
+
814 1
|
817 |
815 0
|
818 |
816 0
|
819 |
817 0
|
|
|
831 |
829 0
|
832 |
830 0
|
833 |
831 0
|
834 |
+
832 1
|
835 |
833 1
|
836 |
834 0
|
837 |
835 0
|
|
|
840 |
838 0
|
841 |
839 0
|
842 |
840 0
|
843 |
+
841 0
|
844 |
842 0
|
845 |
843 0
|
846 |
844 0
|
|
|
867 |
865 0
|
868 |
866 0
|
869 |
867 0
|
870 |
+
868 0
|
871 |
869 0
|
872 |
870 0
|
873 |
871 0
|
|
|
883 |
881 0
|
884 |
882 0
|
885 |
883 0
|
886 |
+
884 1
|
887 |
885 0
|
888 |
886 0
|
889 |
887 0
|
|
|
893 |
891 1
|
894 |
892 0
|
895 |
893 0
|
896 |
+
894 1
|
897 |
895 0
|
898 |
896 0
|
899 |
+
897 1
|
900 |
898 0
|
901 |
899 0
|
902 |
900 0
|
|
|
905 |
903 0
|
906 |
904 0
|
907 |
905 0
|
908 |
+
906 1
|
909 |
907 1
|
910 |
908 0
|
911 |
909 0
|
912 |
910 0
|
913 |
911 0
|
914 |
+
912 1
|
915 |
913 0
|
916 |
914 0
|
917 |
915 0
|
|
|
949 |
947 0
|
950 |
948 0
|
951 |
949 0
|
952 |
+
950 1
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
954 0
|
957 |
+
955 0
|
958 |
956 0
|
959 |
+
957 1
|
960 |
958 0
|
961 |
959 0
|
962 |
960 0
|
963 |
961 0
|
964 |
962 0
|
965 |
+
963 0
|
966 |
964 0
|
967 |
965 0
|
968 |
966 0
|
|
|
991 |
989 0
|
992 |
990 0
|
993 |
991 1
|
994 |
+
992 1
|
995 |
993 0
|
996 |
994 0
|
997 |
+
995 1
|
998 |
996 0
|
999 |
997 0
|
1000 |
+
998 1
|
1001 |
999 1
|
1002 |
1000 0
|
1003 |
1001 0
|
1004 |
1002 0
|
1005 |
+
1003 1
|
1006 |
1004 0
|
1007 |
1005 0
|
1008 |
1006 0
|
runs/May15_17-27-18_indolem-petl-vm/events.out.tfevents.1715796187.indolem-petl-vm.579186.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c10c37be125002ed98cbc0b129247fa6687b064aa0f13207c7aee099ebc758a
|
3 |
+
size 560
|
test_results.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"accuracy": 0.8615232443125618,
|
3 |
+
"f1": 0.8344251555846709,
|
4 |
+
"precision": 0.8325509007667684,
|
5 |
+
"recall": 0.8363917467548971
|
6 |
+
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 3638,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"train_loss": 0.35800845193081215,
|
4 |
+
"train_runtime": 2113.1391,
|
5 |
"train_samples": 3638,
|
6 |
+
"train_samples_per_second": 34.432,
|
7 |
+
"train_steps_per_second": 1.155
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,392 +10,392 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm":
|
14 |
"learning_rate": 4.75e-05,
|
15 |
-
"loss": 0.
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
-
"eval_accuracy": 0.
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime":
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second":
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
-
"grad_norm":
|
33 |
"learning_rate": 4.5e-05,
|
34 |
-
"loss": 0.
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime":
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second":
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
-
"grad_norm":
|
52 |
"learning_rate": 4.25e-05,
|
53 |
-
"loss": 0.
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss": 0.
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime":
|
64 |
-
"eval_samples_per_second":
|
65 |
-
"eval_steps_per_second":
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
-
"grad_norm":
|
71 |
"learning_rate": 4e-05,
|
72 |
-
"loss": 0.
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss": 0.
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime": 5.
|
83 |
-
"eval_samples_per_second": 79.
|
84 |
-
"eval_steps_per_second": 9.
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
-
"grad_norm":
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
-
"loss": 0.
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss": 0.
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime":
|
102 |
-
"eval_samples_per_second":
|
103 |
-
"eval_steps_per_second":
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
-
"grad_norm":
|
109 |
"learning_rate": 3.5e-05,
|
110 |
-
"loss": 0.
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
-
"eval_accuracy": 0.
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss": 0.
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime":
|
121 |
-
"eval_samples_per_second":
|
122 |
-
"eval_steps_per_second":
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
-
"grad_norm":
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
-
"loss": 0.
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
-
"eval_accuracy": 0.
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss": 0.
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime":
|
140 |
-
"eval_samples_per_second":
|
141 |
-
"eval_steps_per_second":
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
-
"grad_norm":
|
147 |
"learning_rate": 3e-05,
|
148 |
-
"loss": 0.
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime":
|
159 |
-
"eval_samples_per_second": 79.
|
160 |
-
"eval_steps_per_second":
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
-
"grad_norm":
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
-
"loss": 0.
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 0.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime":
|
178 |
-
"eval_samples_per_second":
|
179 |
-
"eval_steps_per_second":
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
-
"grad_norm":
|
185 |
"learning_rate": 2.5e-05,
|
186 |
-
"loss": 0.
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
-
"eval_accuracy": 0.
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 0.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime":
|
197 |
-
"eval_samples_per_second":
|
198 |
-
"eval_steps_per_second":
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
-
"grad_norm":
|
204 |
"learning_rate": 2.25e-05,
|
205 |
-
"loss": 0.
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
-
"eval_accuracy": 0.
|
211 |
-
"eval_f1": 0.
|
212 |
-
"eval_loss": 0.
|
213 |
-
"eval_precision": 0.
|
214 |
-
"eval_recall": 0.
|
215 |
-
"eval_runtime":
|
216 |
-
"eval_samples_per_second":
|
217 |
-
"eval_steps_per_second":
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
-
"grad_norm":
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_f1": 0.
|
231 |
-
"eval_loss": 0.
|
232 |
-
"eval_precision": 0.
|
233 |
-
"eval_recall": 0.
|
234 |
-
"eval_runtime":
|
235 |
-
"eval_samples_per_second":
|
236 |
-
"eval_steps_per_second":
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
-
"grad_norm":
|
242 |
"learning_rate": 1.75e-05,
|
243 |
-
"loss": 0.
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
-
"eval_accuracy": 0.
|
249 |
-
"eval_f1": 0.
|
250 |
-
"eval_loss": 0.
|
251 |
-
"eval_precision": 0.
|
252 |
-
"eval_recall": 0.
|
253 |
-
"eval_runtime":
|
254 |
-
"eval_samples_per_second":
|
255 |
-
"eval_steps_per_second":
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
-
"grad_norm":
|
261 |
"learning_rate": 1.5e-05,
|
262 |
-
"loss": 0.
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
-
"eval_accuracy": 0.
|
268 |
-
"eval_f1": 0.
|
269 |
-
"eval_loss": 0.
|
270 |
-
"eval_precision": 0.
|
271 |
-
"eval_recall": 0.
|
272 |
-
"eval_runtime":
|
273 |
-
"eval_samples_per_second":
|
274 |
-
"eval_steps_per_second":
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
-
"grad_norm":
|
280 |
"learning_rate": 1.25e-05,
|
281 |
-
"loss": 0.
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
-
"eval_accuracy": 0.
|
287 |
-
"eval_f1": 0.
|
288 |
-
"eval_loss": 0.
|
289 |
-
"eval_precision": 0.
|
290 |
-
"eval_recall": 0.
|
291 |
-
"eval_runtime": 5.
|
292 |
-
"eval_samples_per_second": 78.
|
293 |
-
"eval_steps_per_second": 9.
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
-
"grad_norm": 0.
|
299 |
"learning_rate": 1e-05,
|
300 |
-
"loss": 0.
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
-
"eval_accuracy": 0.
|
306 |
-
"eval_f1": 0.
|
307 |
-
"eval_loss": 0.
|
308 |
-
"eval_precision": 0.
|
309 |
-
"eval_recall": 0.
|
310 |
-
"eval_runtime": 5.
|
311 |
-
"eval_samples_per_second":
|
312 |
-
"eval_steps_per_second":
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
-
"grad_norm":
|
318 |
"learning_rate": 7.5e-06,
|
319 |
-
"loss": 0.
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_f1": 0.
|
326 |
-
"eval_loss": 0.
|
327 |
-
"eval_precision": 0.
|
328 |
-
"eval_recall": 0.
|
329 |
-
"eval_runtime":
|
330 |
-
"eval_samples_per_second":
|
331 |
-
"eval_steps_per_second":
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
-
"grad_norm":
|
337 |
"learning_rate": 5e-06,
|
338 |
-
"loss": 0.
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
-
"eval_accuracy": 0.
|
344 |
-
"eval_f1": 0.
|
345 |
-
"eval_loss": 0.
|
346 |
-
"eval_precision": 0.
|
347 |
-
"eval_recall": 0.
|
348 |
-
"eval_runtime":
|
349 |
-
"eval_samples_per_second":
|
350 |
-
"eval_steps_per_second":
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
-
"grad_norm":
|
356 |
"learning_rate": 2.5e-06,
|
357 |
-
"loss": 0.
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
-
"eval_accuracy": 0.
|
363 |
-
"eval_f1": 0.
|
364 |
-
"eval_loss": 0.
|
365 |
-
"eval_precision": 0.
|
366 |
-
"eval_recall": 0.
|
367 |
-
"eval_runtime":
|
368 |
-
"eval_samples_per_second":
|
369 |
-
"eval_steps_per_second":
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
-
"grad_norm":
|
375 |
"learning_rate": 0.0,
|
376 |
-
"loss": 0.
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
-
"eval_accuracy": 0.
|
382 |
-
"eval_f1": 0.
|
383 |
-
"eval_loss": 0.
|
384 |
-
"eval_precision": 0.
|
385 |
-
"eval_recall": 0.
|
386 |
-
"eval_runtime":
|
387 |
-
"eval_samples_per_second":
|
388 |
-
"eval_steps_per_second":
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
-
"total_flos":
|
395 |
-
"train_loss": 0.
|
396 |
-
"train_runtime":
|
397 |
-
"train_samples_per_second":
|
398 |
-
"train_steps_per_second":
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
@@ -403,7 +403,7 @@
|
|
403 |
"num_input_tokens_seen": 0,
|
404 |
"num_train_epochs": 20,
|
405 |
"save_steps": 500,
|
406 |
-
"total_flos":
|
407 |
"train_batch_size": 30,
|
408 |
"trial_name": null,
|
409 |
"trial_params": null
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 3.0131800174713135,
|
14 |
"learning_rate": 4.75e-05,
|
15 |
+
"loss": 0.5623,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.7167919799498746,
|
21 |
+
"eval_f1": 0.5794790005316321,
|
22 |
+
"eval_loss": 0.5053456425666809,
|
23 |
+
"eval_precision": 0.6409822866344606,
|
24 |
+
"eval_recall": 0.5796053827968721,
|
25 |
+
"eval_runtime": 5.6071,
|
26 |
+
"eval_samples_per_second": 71.159,
|
27 |
+
"eval_steps_per_second": 8.917,
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
+
"grad_norm": 5.634490966796875,
|
33 |
"learning_rate": 4.5e-05,
|
34 |
+
"loss": 0.518,
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.7293233082706767,
|
40 |
+
"eval_f1": 0.599784530797236,
|
41 |
+
"eval_loss": 0.4860531687736511,
|
42 |
+
"eval_precision": 0.6673625792811839,
|
43 |
+
"eval_recall": 0.5959719949081652,
|
44 |
+
"eval_runtime": 5.7755,
|
45 |
+
"eval_samples_per_second": 69.085,
|
46 |
+
"eval_steps_per_second": 8.657,
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
+
"grad_norm": 1.959808111190796,
|
52 |
"learning_rate": 4.25e-05,
|
53 |
+
"loss": 0.4835,
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.7694235588972431,
|
59 |
+
"eval_f1": 0.7145034843205575,
|
60 |
+
"eval_loss": 0.45518842339515686,
|
61 |
+
"eval_precision": 0.7210824478299833,
|
62 |
+
"eval_recall": 0.7093562465902892,
|
63 |
+
"eval_runtime": 5.2584,
|
64 |
+
"eval_samples_per_second": 75.878,
|
65 |
+
"eval_steps_per_second": 9.509,
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
+
"grad_norm": 4.635169506072998,
|
71 |
"learning_rate": 4e-05,
|
72 |
+
"loss": 0.4497,
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.7944862155388471,
|
78 |
+
"eval_f1": 0.7520912893253319,
|
79 |
+
"eval_loss": 0.4223441481590271,
|
80 |
+
"eval_precision": 0.7520912893253319,
|
81 |
+
"eval_recall": 0.7520912893253319,
|
82 |
+
"eval_runtime": 5.0487,
|
83 |
+
"eval_samples_per_second": 79.03,
|
84 |
+
"eval_steps_per_second": 9.903,
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
+
"grad_norm": 8.219679832458496,
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
+
"loss": 0.4266,
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.8170426065162907,
|
97 |
+
"eval_f1": 0.7740779522978476,
|
98 |
+
"eval_loss": 0.399569034576416,
|
99 |
+
"eval_precision": 0.7814051164566629,
|
100 |
+
"eval_recall": 0.7680487361338425,
|
101 |
+
"eval_runtime": 5.0767,
|
102 |
+
"eval_samples_per_second": 78.595,
|
103 |
+
"eval_steps_per_second": 9.849,
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
+
"grad_norm": 4.150725841522217,
|
109 |
"learning_rate": 3.5e-05,
|
110 |
+
"loss": 0.3907,
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.8195488721804511,
|
116 |
+
"eval_f1": 0.784453781512605,
|
117 |
+
"eval_loss": 0.3830115497112274,
|
118 |
+
"eval_precision": 0.7818241274748796,
|
119 |
+
"eval_recall": 0.787324968176032,
|
120 |
+
"eval_runtime": 5.0718,
|
121 |
+
"eval_samples_per_second": 78.67,
|
122 |
+
"eval_steps_per_second": 9.858,
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
+
"grad_norm": 3.297985076904297,
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
+
"loss": 0.3742,
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.8345864661654135,
|
135 |
+
"eval_f1": 0.798423147581139,
|
136 |
+
"eval_loss": 0.3684135675430298,
|
137 |
+
"eval_precision": 0.8016430472182685,
|
138 |
+
"eval_recall": 0.7954628114202582,
|
139 |
+
"eval_runtime": 5.0743,
|
140 |
+
"eval_samples_per_second": 78.632,
|
141 |
+
"eval_steps_per_second": 9.854,
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
+
"grad_norm": 8.395323753356934,
|
147 |
"learning_rate": 3e-05,
|
148 |
+
"loss": 0.3616,
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.8270676691729323,
|
154 |
+
"eval_f1": 0.7967966933608887,
|
155 |
+
"eval_loss": 0.3719731867313385,
|
156 |
+
"eval_precision": 0.7902444649446494,
|
157 |
+
"eval_recall": 0.8051463902527732,
|
158 |
+
"eval_runtime": 5.0484,
|
159 |
+
"eval_samples_per_second": 79.035,
|
160 |
+
"eval_steps_per_second": 9.904,
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
+
"grad_norm": 3.748974561691284,
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
+
"loss": 0.3294,
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.8370927318295739,
|
173 |
+
"eval_f1": 0.8076965854743632,
|
174 |
+
"eval_loss": 0.36888691782951355,
|
175 |
+
"eval_precision": 0.8018925518925519,
|
176 |
+
"eval_recall": 0.8147390434624477,
|
177 |
+
"eval_runtime": 5.0543,
|
178 |
+
"eval_samples_per_second": 78.943,
|
179 |
+
"eval_steps_per_second": 9.893,
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
+
"grad_norm": 9.309541702270508,
|
185 |
"learning_rate": 2.5e-05,
|
186 |
+
"loss": 0.3207,
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.8395989974937343,
|
192 |
+
"eval_f1": 0.8110907261644079,
|
193 |
+
"eval_loss": 0.36315786838531494,
|
194 |
+
"eval_precision": 0.8046983557202408,
|
195 |
+
"eval_recall": 0.819012547735952,
|
196 |
+
"eval_runtime": 5.0709,
|
197 |
+
"eval_samples_per_second": 78.684,
|
198 |
+
"eval_steps_per_second": 9.86,
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
+
"grad_norm": 1.2568168640136719,
|
204 |
"learning_rate": 2.25e-05,
|
205 |
+
"loss": 0.3214,
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
+
"eval_accuracy": 0.8370927318295739,
|
211 |
+
"eval_f1": 0.8085765951950401,
|
212 |
+
"eval_loss": 0.3577338457107544,
|
213 |
+
"eval_precision": 0.8017470018450185,
|
214 |
+
"eval_recall": 0.817239498090562,
|
215 |
+
"eval_runtime": 5.1071,
|
216 |
+
"eval_samples_per_second": 78.126,
|
217 |
+
"eval_steps_per_second": 9.79,
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
+
"grad_norm": 1.915198802947998,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.3167,
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
+
"eval_accuracy": 0.8395989974937343,
|
230 |
+
"eval_f1": 0.8119476846942383,
|
231 |
+
"eval_loss": 0.36069995164871216,
|
232 |
+
"eval_precision": 0.8045650301464256,
|
233 |
+
"eval_recall": 0.8215130023640662,
|
234 |
+
"eval_runtime": 5.0598,
|
235 |
+
"eval_samples_per_second": 78.857,
|
236 |
+
"eval_steps_per_second": 9.882,
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
+
"grad_norm": 1.9545631408691406,
|
242 |
"learning_rate": 1.75e-05,
|
243 |
+
"loss": 0.289,
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
+
"eval_accuracy": 0.8345864661654135,
|
249 |
+
"eval_f1": 0.8060710498409331,
|
250 |
+
"eval_loss": 0.3684280812740326,
|
251 |
+
"eval_precision": 0.7988372093023256,
|
252 |
+
"eval_recall": 0.8154664484451719,
|
253 |
+
"eval_runtime": 5.1019,
|
254 |
+
"eval_samples_per_second": 78.206,
|
255 |
+
"eval_steps_per_second": 9.8,
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
+
"grad_norm": 5.748187065124512,
|
261 |
"learning_rate": 1.5e-05,
|
262 |
+
"loss": 0.2997,
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
+
"eval_accuracy": 0.849624060150376,
|
268 |
+
"eval_f1": 0.8176861216035092,
|
269 |
+
"eval_loss": 0.3479882776737213,
|
270 |
+
"eval_precision": 0.8193355786895284,
|
271 |
+
"eval_recall": 0.8161029278050556,
|
272 |
+
"eval_runtime": 5.0557,
|
273 |
+
"eval_samples_per_second": 78.92,
|
274 |
+
"eval_steps_per_second": 9.89,
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
+
"grad_norm": 4.010083198547363,
|
280 |
"learning_rate": 1.25e-05,
|
281 |
+
"loss": 0.2986,
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
+
"eval_accuracy": 0.849624060150376,
|
287 |
+
"eval_f1": 0.821236559139785,
|
288 |
+
"eval_loss": 0.35758015513420105,
|
289 |
+
"eval_precision": 0.8169406150583245,
|
290 |
+
"eval_recall": 0.8261047463175123,
|
291 |
+
"eval_runtime": 5.0955,
|
292 |
+
"eval_samples_per_second": 78.304,
|
293 |
+
"eval_steps_per_second": 9.813,
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
+
"grad_norm": 0.9220337271690369,
|
299 |
"learning_rate": 1e-05,
|
300 |
+
"loss": 0.2914,
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
+
"eval_accuracy": 0.849624060150376,
|
306 |
+
"eval_f1": 0.8195005730140539,
|
307 |
+
"eval_loss": 0.34965991973876953,
|
308 |
+
"eval_precision": 0.8179621848739496,
|
309 |
+
"eval_recall": 0.8211038370612839,
|
310 |
+
"eval_runtime": 5.0617,
|
311 |
+
"eval_samples_per_second": 78.827,
|
312 |
+
"eval_steps_per_second": 9.878,
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
+
"grad_norm": 1.7026562690734863,
|
318 |
"learning_rate": 7.5e-06,
|
319 |
+
"loss": 0.278,
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
+
"eval_accuracy": 0.8521303258145363,
|
325 |
+
"eval_f1": 0.8229427559286084,
|
326 |
+
"eval_loss": 0.3539772927761078,
|
327 |
+
"eval_precision": 0.8206541218637993,
|
328 |
+
"eval_recall": 0.8253773413347881,
|
329 |
+
"eval_runtime": 5.1199,
|
330 |
+
"eval_samples_per_second": 77.931,
|
331 |
+
"eval_steps_per_second": 9.766,
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
+
"grad_norm": 5.839470863342285,
|
337 |
"learning_rate": 5e-06,
|
338 |
+
"loss": 0.2887,
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
+
"eval_accuracy": 0.8521303258145363,
|
344 |
+
"eval_f1": 0.8229427559286084,
|
345 |
+
"eval_loss": 0.35161107778549194,
|
346 |
+
"eval_precision": 0.8206541218637993,
|
347 |
+
"eval_recall": 0.8253773413347881,
|
348 |
+
"eval_runtime": 5.1154,
|
349 |
+
"eval_samples_per_second": 77.999,
|
350 |
+
"eval_steps_per_second": 9.774,
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
+
"grad_norm": 7.782900810241699,
|
356 |
"learning_rate": 2.5e-06,
|
357 |
+
"loss": 0.2829,
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
+
"eval_accuracy": 0.8521303258145363,
|
363 |
+
"eval_f1": 0.8229427559286084,
|
364 |
+
"eval_loss": 0.35369938611984253,
|
365 |
+
"eval_precision": 0.8206541218637993,
|
366 |
+
"eval_recall": 0.8253773413347881,
|
367 |
+
"eval_runtime": 5.0565,
|
368 |
+
"eval_samples_per_second": 78.908,
|
369 |
+
"eval_steps_per_second": 9.888,
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
+
"grad_norm": 5.059621334075928,
|
375 |
"learning_rate": 0.0,
|
376 |
+
"loss": 0.2771,
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
+
"eval_accuracy": 0.8546365914786967,
|
382 |
+
"eval_f1": 0.8263655462184873,
|
383 |
+
"eval_loss": 0.35401326417922974,
|
384 |
+
"eval_precision": 0.8233396753671443,
|
385 |
+
"eval_recall": 0.8296508456082925,
|
386 |
+
"eval_runtime": 5.0854,
|
387 |
+
"eval_samples_per_second": 78.459,
|
388 |
+
"eval_steps_per_second": 9.832,
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
+
"total_flos": 7597037114448000.0,
|
395 |
+
"train_loss": 0.35800845193081215,
|
396 |
+
"train_runtime": 2113.1391,
|
397 |
+
"train_samples_per_second": 34.432,
|
398 |
+
"train_steps_per_second": 1.155
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
|
|
403 |
"num_input_tokens_seen": 0,
|
404 |
"num_train_epochs": 20,
|
405 |
"save_steps": 500,
|
406 |
+
"total_flos": 7597037114448000.0,
|
407 |
"train_batch_size": 30,
|
408 |
"trial_name": null,
|
409 |
"trial_params": null
|