End of training
Browse files- README.md +2 -0
- all_results.json +16 -16
- eval_results.json +8 -8
- predict_results.json +4 -4
- predict_results.txt +63 -63
- runs/Jun03_09-42-28_a358b85c7679/events.out.tfevents.1717408644.a358b85c7679.12601.1 +3 -0
- train_results.json +4 -4
- trainer_state.json +202 -202
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
base_model: indolem/indobert-base-uncased
|
4 |
tags:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: mit
|
5 |
base_model: indolem/indobert-base-uncased
|
6 |
tags:
|
all_results.json
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
"epoch": 20.0,
|
4 |
-
"eval_accuracy": 0.
|
5 |
-
"eval_f1": 0.
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0.
|
8 |
-
"eval_recall": 0.
|
9 |
-
"eval_runtime":
|
10 |
"eval_samples": 399,
|
11 |
-
"eval_samples_per_second":
|
12 |
-
"eval_steps_per_second":
|
13 |
-
"f1": 0.
|
14 |
-
"precision": 0.
|
15 |
-
"recall": 0.
|
16 |
-
"train_loss": 0.
|
17 |
-
"train_runtime":
|
18 |
"train_samples": 3638,
|
19 |
-
"train_samples_per_second":
|
20 |
-
"train_steps_per_second":
|
21 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9060336300692384,
|
3 |
"epoch": 20.0,
|
4 |
+
"eval_accuracy": 0.8972431077694235,
|
5 |
+
"eval_f1": 0.8792560061999484,
|
6 |
+
"eval_loss": 0.8335620164871216,
|
7 |
+
"eval_precision": 0.8707622232472325,
|
8 |
+
"eval_recall": 0.889798145117294,
|
9 |
+
"eval_runtime": 1.6549,
|
10 |
"eval_samples": 399,
|
11 |
+
"eval_samples_per_second": 241.101,
|
12 |
+
"eval_steps_per_second": 30.213,
|
13 |
+
"f1": 0.8885945244345052,
|
14 |
+
"precision": 0.8834872799509323,
|
15 |
+
"recall": 0.8943164810753316,
|
16 |
+
"train_loss": 0.05526667458356404,
|
17 |
+
"train_runtime": 862.9394,
|
18 |
"train_samples": 3638,
|
19 |
+
"train_samples_per_second": 84.316,
|
20 |
+
"train_steps_per_second": 2.828
|
21 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.8972431077694235,
|
4 |
+
"eval_f1": 0.8792560061999484,
|
5 |
+
"eval_loss": 0.8335620164871216,
|
6 |
+
"eval_precision": 0.8707622232472325,
|
7 |
+
"eval_recall": 0.889798145117294,
|
8 |
+
"eval_runtime": 1.6549,
|
9 |
"eval_samples": 399,
|
10 |
+
"eval_samples_per_second": 241.101,
|
11 |
+
"eval_steps_per_second": 30.213
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
-
"f1": 0.
|
4 |
-
"precision": 0.
|
5 |
-
"recall": 0.
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9060336300692384,
|
3 |
+
"f1": 0.8885945244345052,
|
4 |
+
"precision": 0.8834872799509323,
|
5 |
+
"recall": 0.8943164810753316
|
6 |
}
|
predict_results.txt
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
index prediction
|
2 |
0 1
|
3 |
-
1
|
4 |
2 1
|
5 |
3 1
|
6 |
-
4
|
7 |
5 1
|
8 |
6 1
|
9 |
7 1
|
10 |
8 0
|
11 |
-
9
|
12 |
10 1
|
13 |
11 1
|
14 |
12 1
|
@@ -24,7 +24,7 @@ index prediction
|
|
24 |
22 1
|
25 |
23 1
|
26 |
24 0
|
27 |
-
25
|
28 |
26 1
|
29 |
27 1
|
30 |
28 1
|
@@ -33,23 +33,23 @@ index prediction
|
|
33 |
31 1
|
34 |
32 1
|
35 |
33 1
|
36 |
-
34
|
37 |
35 1
|
38 |
36 1
|
39 |
37 1
|
40 |
-
38
|
41 |
-
39
|
42 |
40 1
|
43 |
41 1
|
44 |
42 1
|
45 |
43 1
|
46 |
44 1
|
47 |
-
45
|
48 |
46 1
|
49 |
47 1
|
50 |
48 1
|
51 |
49 0
|
52 |
-
50
|
53 |
51 1
|
54 |
52 0
|
55 |
53 1
|
@@ -58,7 +58,7 @@ index prediction
|
|
58 |
56 1
|
59 |
57 0
|
60 |
58 0
|
61 |
-
59
|
62 |
60 1
|
63 |
61 1
|
64 |
62 1
|
@@ -76,10 +76,10 @@ index prediction
|
|
76 |
74 1
|
77 |
75 1
|
78 |
76 1
|
79 |
-
77
|
80 |
78 1
|
81 |
79 1
|
82 |
-
80
|
83 |
81 1
|
84 |
82 1
|
85 |
83 1
|
@@ -96,11 +96,11 @@ index prediction
|
|
96 |
94 1
|
97 |
95 1
|
98 |
96 1
|
99 |
-
97
|
100 |
98 1
|
101 |
-
99
|
102 |
100 1
|
103 |
-
101
|
104 |
102 1
|
105 |
103 1
|
106 |
104 1
|
@@ -112,12 +112,12 @@ index prediction
|
|
112 |
110 1
|
113 |
111 1
|
114 |
112 1
|
115 |
-
113
|
116 |
114 1
|
117 |
115 1
|
118 |
116 1
|
119 |
117 1
|
120 |
-
118
|
121 |
119 1
|
122 |
120 1
|
123 |
121 1
|
@@ -141,7 +141,7 @@ index prediction
|
|
141 |
139 1
|
142 |
140 1
|
143 |
141 1
|
144 |
-
142
|
145 |
143 1
|
146 |
144 1
|
147 |
145 1
|
@@ -149,7 +149,7 @@ index prediction
|
|
149 |
147 1
|
150 |
148 1
|
151 |
149 1
|
152 |
-
150
|
153 |
151 1
|
154 |
152 1
|
155 |
153 1
|
@@ -167,11 +167,11 @@ index prediction
|
|
167 |
165 0
|
168 |
166 1
|
169 |
167 1
|
170 |
-
168
|
171 |
169 1
|
172 |
-
170
|
173 |
171 1
|
174 |
-
172
|
175 |
173 0
|
176 |
174 1
|
177 |
175 1
|
@@ -204,7 +204,7 @@ index prediction
|
|
204 |
202 1
|
205 |
203 1
|
206 |
204 1
|
207 |
-
205
|
208 |
206 1
|
209 |
207 0
|
210 |
208 1
|
@@ -216,7 +216,7 @@ index prediction
|
|
216 |
214 0
|
217 |
215 1
|
218 |
216 0
|
219 |
-
217
|
220 |
218 1
|
221 |
219 1
|
222 |
220 0
|
@@ -228,8 +228,8 @@ index prediction
|
|
228 |
226 0
|
229 |
227 0
|
230 |
228 1
|
231 |
-
229
|
232 |
-
230
|
233 |
231 1
|
234 |
232 1
|
235 |
233 1
|
@@ -272,7 +272,7 @@ index prediction
|
|
272 |
270 1
|
273 |
271 1
|
274 |
272 1
|
275 |
-
273
|
276 |
274 1
|
277 |
275 1
|
278 |
276 1
|
@@ -365,7 +365,7 @@ index prediction
|
|
365 |
363 0
|
366 |
364 0
|
367 |
365 0
|
368 |
-
366
|
369 |
367 0
|
370 |
368 0
|
371 |
369 0
|
@@ -391,7 +391,7 @@ index prediction
|
|
391 |
389 0
|
392 |
390 0
|
393 |
391 0
|
394 |
-
392
|
395 |
393 0
|
396 |
394 0
|
397 |
395 0
|
@@ -401,7 +401,7 @@ index prediction
|
|
401 |
399 0
|
402 |
400 0
|
403 |
401 0
|
404 |
-
402
|
405 |
403 0
|
406 |
404 0
|
407 |
405 0
|
@@ -420,14 +420,14 @@ index prediction
|
|
420 |
418 0
|
421 |
419 0
|
422 |
420 1
|
423 |
-
421
|
424 |
422 0
|
425 |
423 0
|
426 |
424 0
|
427 |
425 0
|
428 |
426 0
|
429 |
427 0
|
430 |
-
428
|
431 |
429 0
|
432 |
430 0
|
433 |
431 0
|
@@ -446,17 +446,17 @@ index prediction
|
|
446 |
444 0
|
447 |
445 0
|
448 |
446 0
|
449 |
-
447
|
450 |
448 0
|
451 |
449 0
|
452 |
450 0
|
453 |
451 0
|
454 |
-
452
|
455 |
453 0
|
456 |
454 0
|
457 |
455 0
|
458 |
456 0
|
459 |
-
457
|
460 |
458 0
|
461 |
459 0
|
462 |
460 0
|
@@ -510,7 +510,7 @@ index prediction
|
|
510 |
508 0
|
511 |
509 0
|
512 |
510 0
|
513 |
-
511
|
514 |
512 0
|
515 |
513 0
|
516 |
514 0
|
@@ -521,7 +521,7 @@ index prediction
|
|
521 |
519 0
|
522 |
520 0
|
523 |
521 0
|
524 |
-
522
|
525 |
523 0
|
526 |
524 0
|
527 |
525 0
|
@@ -535,7 +535,7 @@ index prediction
|
|
535 |
533 0
|
536 |
534 0
|
537 |
535 0
|
538 |
-
536
|
539 |
537 0
|
540 |
538 1
|
541 |
539 0
|
@@ -559,7 +559,7 @@ index prediction
|
|
559 |
557 0
|
560 |
558 0
|
561 |
559 0
|
562 |
-
560
|
563 |
561 0
|
564 |
562 0
|
565 |
563 0
|
@@ -595,7 +595,7 @@ index prediction
|
|
595 |
593 0
|
596 |
594 0
|
597 |
595 0
|
598 |
-
596
|
599 |
597 0
|
600 |
598 0
|
601 |
599 0
|
@@ -607,9 +607,9 @@ index prediction
|
|
607 |
605 0
|
608 |
606 0
|
609 |
607 0
|
610 |
-
608
|
611 |
609 0
|
612 |
-
610
|
613 |
611 0
|
614 |
612 0
|
615 |
613 0
|
@@ -625,20 +625,20 @@ index prediction
|
|
625 |
623 0
|
626 |
624 0
|
627 |
625 0
|
628 |
-
626
|
629 |
627 0
|
630 |
-
628
|
631 |
629 0
|
632 |
630 0
|
633 |
631 0
|
634 |
632 0
|
635 |
-
633
|
636 |
634 0
|
637 |
635 0
|
638 |
636 0
|
639 |
637 0
|
640 |
638 0
|
641 |
-
639
|
642 |
640 0
|
643 |
641 0
|
644 |
642 0
|
@@ -649,7 +649,7 @@ index prediction
|
|
649 |
647 0
|
650 |
648 0
|
651 |
649 0
|
652 |
-
650
|
653 |
651 0
|
654 |
652 1
|
655 |
653 0
|
@@ -668,11 +668,11 @@ index prediction
|
|
668 |
666 0
|
669 |
667 0
|
670 |
668 0
|
671 |
-
669
|
672 |
670 0
|
673 |
671 0
|
674 |
672 0
|
675 |
-
673
|
676 |
674 0
|
677 |
675 0
|
678 |
676 0
|
@@ -702,7 +702,7 @@ index prediction
|
|
702 |
700 0
|
703 |
701 0
|
704 |
702 0
|
705 |
-
703
|
706 |
704 0
|
707 |
705 0
|
708 |
706 0
|
@@ -726,7 +726,7 @@ index prediction
|
|
726 |
724 0
|
727 |
725 0
|
728 |
726 0
|
729 |
-
727
|
730 |
728 1
|
731 |
729 0
|
732 |
730 0
|
@@ -738,7 +738,7 @@ index prediction
|
|
738 |
736 0
|
739 |
737 0
|
740 |
738 0
|
741 |
-
739
|
742 |
740 0
|
743 |
741 0
|
744 |
742 0
|
@@ -769,7 +769,7 @@ index prediction
|
|
769 |
767 0
|
770 |
768 0
|
771 |
769 0
|
772 |
-
770
|
773 |
771 0
|
774 |
772 0
|
775 |
773 0
|
@@ -837,7 +837,7 @@ index prediction
|
|
837 |
835 0
|
838 |
836 0
|
839 |
837 0
|
840 |
-
838
|
841 |
839 0
|
842 |
840 0
|
843 |
841 1
|
@@ -861,7 +861,7 @@ index prediction
|
|
861 |
859 0
|
862 |
860 0
|
863 |
861 0
|
864 |
-
862
|
865 |
863 0
|
866 |
864 0
|
867 |
865 0
|
@@ -885,7 +885,7 @@ index prediction
|
|
885 |
883 0
|
886 |
884 0
|
887 |
885 0
|
888 |
-
886
|
889 |
887 0
|
890 |
888 0
|
891 |
889 0
|
@@ -933,13 +933,13 @@ index prediction
|
|
933 |
931 0
|
934 |
932 0
|
935 |
933 0
|
936 |
-
934
|
937 |
935 0
|
938 |
936 0
|
939 |
937 0
|
940 |
938 0
|
941 |
939 0
|
942 |
-
940
|
943 |
941 0
|
944 |
942 0
|
945 |
943 1
|
@@ -949,11 +949,11 @@ index prediction
|
|
949 |
947 0
|
950 |
948 0
|
951 |
949 0
|
952 |
-
950
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
-
954
|
957 |
955 1
|
958 |
956 0
|
959 |
957 0
|
@@ -968,7 +968,7 @@ index prediction
|
|
968 |
966 0
|
969 |
967 0
|
970 |
968 0
|
971 |
-
969
|
972 |
970 0
|
973 |
971 0
|
974 |
972 0
|
@@ -984,13 +984,13 @@ index prediction
|
|
984 |
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
-
985
|
988 |
986 1
|
989 |
987 0
|
990 |
988 0
|
991 |
989 0
|
992 |
990 0
|
993 |
-
991
|
994 |
992 0
|
995 |
993 0
|
996 |
994 0
|
|
|
1 |
index prediction
|
2 |
0 1
|
3 |
+
1 0
|
4 |
2 1
|
5 |
3 1
|
6 |
+
4 1
|
7 |
5 1
|
8 |
6 1
|
9 |
7 1
|
10 |
8 0
|
11 |
+
9 1
|
12 |
10 1
|
13 |
11 1
|
14 |
12 1
|
|
|
24 |
22 1
|
25 |
23 1
|
26 |
24 0
|
27 |
+
25 1
|
28 |
26 1
|
29 |
27 1
|
30 |
28 1
|
|
|
33 |
31 1
|
34 |
32 1
|
35 |
33 1
|
36 |
+
34 0
|
37 |
35 1
|
38 |
36 1
|
39 |
37 1
|
40 |
+
38 0
|
41 |
+
39 1
|
42 |
40 1
|
43 |
41 1
|
44 |
42 1
|
45 |
43 1
|
46 |
44 1
|
47 |
+
45 1
|
48 |
46 1
|
49 |
47 1
|
50 |
48 1
|
51 |
49 0
|
52 |
+
50 1
|
53 |
51 1
|
54 |
52 0
|
55 |
53 1
|
|
|
58 |
56 1
|
59 |
57 0
|
60 |
58 0
|
61 |
+
59 1
|
62 |
60 1
|
63 |
61 1
|
64 |
62 1
|
|
|
76 |
74 1
|
77 |
75 1
|
78 |
76 1
|
79 |
+
77 1
|
80 |
78 1
|
81 |
79 1
|
82 |
+
80 0
|
83 |
81 1
|
84 |
82 1
|
85 |
83 1
|
|
|
96 |
94 1
|
97 |
95 1
|
98 |
96 1
|
99 |
+
97 1
|
100 |
98 1
|
101 |
+
99 0
|
102 |
100 1
|
103 |
+
101 1
|
104 |
102 1
|
105 |
103 1
|
106 |
104 1
|
|
|
112 |
110 1
|
113 |
111 1
|
114 |
112 1
|
115 |
+
113 1
|
116 |
114 1
|
117 |
115 1
|
118 |
116 1
|
119 |
117 1
|
120 |
+
118 1
|
121 |
119 1
|
122 |
120 1
|
123 |
121 1
|
|
|
141 |
139 1
|
142 |
140 1
|
143 |
141 1
|
144 |
+
142 1
|
145 |
143 1
|
146 |
144 1
|
147 |
145 1
|
|
|
149 |
147 1
|
150 |
148 1
|
151 |
149 1
|
152 |
+
150 1
|
153 |
151 1
|
154 |
152 1
|
155 |
153 1
|
|
|
167 |
165 0
|
168 |
166 1
|
169 |
167 1
|
170 |
+
168 0
|
171 |
169 1
|
172 |
+
170 0
|
173 |
171 1
|
174 |
+
172 1
|
175 |
173 0
|
176 |
174 1
|
177 |
175 1
|
|
|
204 |
202 1
|
205 |
203 1
|
206 |
204 1
|
207 |
+
205 1
|
208 |
206 1
|
209 |
207 0
|
210 |
208 1
|
|
|
216 |
214 0
|
217 |
215 1
|
218 |
216 0
|
219 |
+
217 1
|
220 |
218 1
|
221 |
219 1
|
222 |
220 0
|
|
|
228 |
226 0
|
229 |
227 0
|
230 |
228 1
|
231 |
+
229 0
|
232 |
+
230 0
|
233 |
231 1
|
234 |
232 1
|
235 |
233 1
|
|
|
272 |
270 1
|
273 |
271 1
|
274 |
272 1
|
275 |
+
273 1
|
276 |
274 1
|
277 |
275 1
|
278 |
276 1
|
|
|
365 |
363 0
|
366 |
364 0
|
367 |
365 0
|
368 |
+
366 1
|
369 |
367 0
|
370 |
368 0
|
371 |
369 0
|
|
|
391 |
389 0
|
392 |
390 0
|
393 |
391 0
|
394 |
+
392 0
|
395 |
393 0
|
396 |
394 0
|
397 |
395 0
|
|
|
401 |
399 0
|
402 |
400 0
|
403 |
401 0
|
404 |
+
402 1
|
405 |
403 0
|
406 |
404 0
|
407 |
405 0
|
|
|
420 |
418 0
|
421 |
419 0
|
422 |
420 1
|
423 |
+
421 0
|
424 |
422 0
|
425 |
423 0
|
426 |
424 0
|
427 |
425 0
|
428 |
426 0
|
429 |
427 0
|
430 |
+
428 1
|
431 |
429 0
|
432 |
430 0
|
433 |
431 0
|
|
|
446 |
444 0
|
447 |
445 0
|
448 |
446 0
|
449 |
+
447 0
|
450 |
448 0
|
451 |
449 0
|
452 |
450 0
|
453 |
451 0
|
454 |
+
452 0
|
455 |
453 0
|
456 |
454 0
|
457 |
455 0
|
458 |
456 0
|
459 |
+
457 0
|
460 |
458 0
|
461 |
459 0
|
462 |
460 0
|
|
|
510 |
508 0
|
511 |
509 0
|
512 |
510 0
|
513 |
+
511 0
|
514 |
512 0
|
515 |
513 0
|
516 |
514 0
|
|
|
521 |
519 0
|
522 |
520 0
|
523 |
521 0
|
524 |
+
522 1
|
525 |
523 0
|
526 |
524 0
|
527 |
525 0
|
|
|
535 |
533 0
|
536 |
534 0
|
537 |
535 0
|
538 |
+
536 1
|
539 |
537 0
|
540 |
538 1
|
541 |
539 0
|
|
|
559 |
557 0
|
560 |
558 0
|
561 |
559 0
|
562 |
+
560 0
|
563 |
561 0
|
564 |
562 0
|
565 |
563 0
|
|
|
595 |
593 0
|
596 |
594 0
|
597 |
595 0
|
598 |
+
596 1
|
599 |
597 0
|
600 |
598 0
|
601 |
599 0
|
|
|
607 |
605 0
|
608 |
606 0
|
609 |
607 0
|
610 |
+
608 1
|
611 |
609 0
|
612 |
+
610 0
|
613 |
611 0
|
614 |
612 0
|
615 |
613 0
|
|
|
625 |
623 0
|
626 |
624 0
|
627 |
625 0
|
628 |
+
626 1
|
629 |
627 0
|
630 |
+
628 1
|
631 |
629 0
|
632 |
630 0
|
633 |
631 0
|
634 |
632 0
|
635 |
+
633 1
|
636 |
634 0
|
637 |
635 0
|
638 |
636 0
|
639 |
637 0
|
640 |
638 0
|
641 |
+
639 1
|
642 |
640 0
|
643 |
641 0
|
644 |
642 0
|
|
|
649 |
647 0
|
650 |
648 0
|
651 |
649 0
|
652 |
+
650 1
|
653 |
651 0
|
654 |
652 1
|
655 |
653 0
|
|
|
668 |
666 0
|
669 |
667 0
|
670 |
668 0
|
671 |
+
669 1
|
672 |
670 0
|
673 |
671 0
|
674 |
672 0
|
675 |
+
673 1
|
676 |
674 0
|
677 |
675 0
|
678 |
676 0
|
|
|
702 |
700 0
|
703 |
701 0
|
704 |
702 0
|
705 |
+
703 1
|
706 |
704 0
|
707 |
705 0
|
708 |
706 0
|
|
|
726 |
724 0
|
727 |
725 0
|
728 |
726 0
|
729 |
+
727 1
|
730 |
728 1
|
731 |
729 0
|
732 |
730 0
|
|
|
738 |
736 0
|
739 |
737 0
|
740 |
738 0
|
741 |
+
739 1
|
742 |
740 0
|
743 |
741 0
|
744 |
742 0
|
|
|
769 |
767 0
|
770 |
768 0
|
771 |
769 0
|
772 |
+
770 1
|
773 |
771 0
|
774 |
772 0
|
775 |
773 0
|
|
|
837 |
835 0
|
838 |
836 0
|
839 |
837 0
|
840 |
+
838 0
|
841 |
839 0
|
842 |
840 0
|
843 |
841 1
|
|
|
861 |
859 0
|
862 |
860 0
|
863 |
861 0
|
864 |
+
862 1
|
865 |
863 0
|
866 |
864 0
|
867 |
865 0
|
|
|
885 |
883 0
|
886 |
884 0
|
887 |
885 0
|
888 |
+
886 1
|
889 |
887 0
|
890 |
888 0
|
891 |
889 0
|
|
|
933 |
931 0
|
934 |
932 0
|
935 |
933 0
|
936 |
+
934 0
|
937 |
935 0
|
938 |
936 0
|
939 |
937 0
|
940 |
938 0
|
941 |
939 0
|
942 |
+
940 1
|
943 |
941 0
|
944 |
942 0
|
945 |
943 1
|
|
|
949 |
947 0
|
950 |
948 0
|
951 |
949 0
|
952 |
+
950 1
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
+
954 1
|
957 |
955 1
|
958 |
956 0
|
959 |
957 0
|
|
|
968 |
966 0
|
969 |
967 0
|
970 |
968 0
|
971 |
+
969 1
|
972 |
970 0
|
973 |
971 0
|
974 |
972 0
|
|
|
984 |
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
+
985 1
|
988 |
986 1
|
989 |
987 0
|
990 |
988 0
|
991 |
989 0
|
992 |
990 0
|
993 |
+
991 0
|
994 |
992 0
|
995 |
993 0
|
996 |
994 0
|
runs/Jun03_09-42-28_a358b85c7679/events.out.tfevents.1717408644.a358b85c7679.12601.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc2d609c87bd801d879bee42d0a8edaf96cff90b8084f8ad411431b44b674449
|
3 |
+
size 560
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 3638,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"train_loss": 0.05526667458356404,
|
4 |
+
"train_runtime": 862.9394,
|
5 |
"train_samples": 3638,
|
6 |
+
"train_samples_per_second": 84.316,
|
7 |
+
"train_steps_per_second": 2.828
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,392 +10,392 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm":
|
14 |
"learning_rate": 4.75e-05,
|
15 |
-
"loss": 0.
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
"eval_accuracy": 0.8796992481203008,
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime":
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second":
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
-
"grad_norm":
|
33 |
"learning_rate": 4.5e-05,
|
34 |
-
"loss": 0.
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime":
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second":
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
-
"grad_norm":
|
52 |
"learning_rate": 4.25e-05,
|
53 |
-
"loss": 0.
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss": 0.
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime":
|
64 |
-
"eval_samples_per_second":
|
65 |
-
"eval_steps_per_second":
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
-
"grad_norm":
|
71 |
"learning_rate": 4e-05,
|
72 |
-
"loss": 0.
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss": 0.
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime":
|
83 |
-
"eval_samples_per_second":
|
84 |
-
"eval_steps_per_second":
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
-
"grad_norm": 0.
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
-
"loss": 0.
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss": 0.
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime":
|
102 |
-
"eval_samples_per_second":
|
103 |
-
"eval_steps_per_second":
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
-
"grad_norm": 0.
|
109 |
"learning_rate": 3.5e-05,
|
110 |
-
"loss": 0.
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
-
"eval_accuracy": 0.
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss": 0.
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime":
|
121 |
-
"eval_samples_per_second":
|
122 |
-
"eval_steps_per_second":
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
-
"grad_norm": 0.
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
-
"loss": 0.
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
-
"eval_accuracy": 0.
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss": 0.
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime":
|
140 |
-
"eval_samples_per_second":
|
141 |
-
"eval_steps_per_second":
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
-
"grad_norm": 0.
|
147 |
"learning_rate": 3e-05,
|
148 |
-
"loss": 0.
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime":
|
159 |
-
"eval_samples_per_second":
|
160 |
-
"eval_steps_per_second":
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
-
"grad_norm": 0.
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
-
"loss": 0.
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 0.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime":
|
178 |
-
"eval_samples_per_second":
|
179 |
-
"eval_steps_per_second":
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
-
"grad_norm": 0.
|
185 |
"learning_rate": 2.5e-05,
|
186 |
-
"loss": 0.
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
-
"eval_accuracy": 0.
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 0.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime":
|
197 |
-
"eval_samples_per_second":
|
198 |
-
"eval_steps_per_second":
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
-
"grad_norm": 0.
|
204 |
"learning_rate": 2.25e-05,
|
205 |
-
"loss": 0.
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
-
"eval_accuracy": 0.
|
211 |
-
"eval_f1": 0.
|
212 |
-
"eval_loss": 0.
|
213 |
-
"eval_precision": 0.
|
214 |
-
"eval_recall": 0.
|
215 |
-
"eval_runtime":
|
216 |
-
"eval_samples_per_second":
|
217 |
-
"eval_steps_per_second":
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
-
"grad_norm": 0.
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_f1": 0.
|
231 |
-
"eval_loss": 0.
|
232 |
-
"eval_precision": 0.
|
233 |
-
"eval_recall": 0.
|
234 |
-
"eval_runtime":
|
235 |
-
"eval_samples_per_second":
|
236 |
-
"eval_steps_per_second":
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
-
"grad_norm": 0.
|
242 |
"learning_rate": 1.75e-05,
|
243 |
-
"loss": 0.
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
-
"eval_accuracy": 0.
|
249 |
-
"eval_f1": 0.
|
250 |
-
"eval_loss": 0.
|
251 |
-
"eval_precision": 0.
|
252 |
-
"eval_recall": 0.
|
253 |
-
"eval_runtime":
|
254 |
-
"eval_samples_per_second":
|
255 |
-
"eval_steps_per_second":
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
-
"grad_norm": 0.
|
261 |
"learning_rate": 1.5e-05,
|
262 |
-
"loss": 0.
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
-
"eval_accuracy": 0.
|
268 |
-
"eval_f1": 0.
|
269 |
-
"eval_loss": 0.
|
270 |
-
"eval_precision": 0.
|
271 |
-
"eval_recall": 0.
|
272 |
-
"eval_runtime":
|
273 |
-
"eval_samples_per_second":
|
274 |
-
"eval_steps_per_second":
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
-
"grad_norm": 0.
|
280 |
"learning_rate": 1.25e-05,
|
281 |
-
"loss": 0.
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
"eval_accuracy": 0.899749373433584,
|
287 |
-
"eval_f1": 0.
|
288 |
-
"eval_loss": 0.
|
289 |
-
"eval_precision": 0.
|
290 |
-
"eval_recall": 0.
|
291 |
-
"eval_runtime":
|
292 |
-
"eval_samples_per_second":
|
293 |
-
"eval_steps_per_second":
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
-
"grad_norm": 0.
|
299 |
"learning_rate": 1e-05,
|
300 |
-
"loss": 0.
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
-
"eval_accuracy": 0.
|
306 |
-
"eval_f1": 0.
|
307 |
-
"eval_loss": 0.
|
308 |
-
"eval_precision": 0.
|
309 |
-
"eval_recall": 0.
|
310 |
-
"eval_runtime":
|
311 |
-
"eval_samples_per_second":
|
312 |
-
"eval_steps_per_second":
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
-
"grad_norm": 0.
|
318 |
"learning_rate": 7.5e-06,
|
319 |
-
"loss": 0.
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_f1": 0.
|
326 |
-
"eval_loss": 0.
|
327 |
-
"eval_precision": 0.
|
328 |
-
"eval_recall": 0.
|
329 |
-
"eval_runtime":
|
330 |
-
"eval_samples_per_second":
|
331 |
-
"eval_steps_per_second":
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
-
"grad_norm": 0.
|
337 |
"learning_rate": 5e-06,
|
338 |
-
"loss": 0.
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
-
"eval_accuracy": 0.
|
344 |
-
"eval_f1": 0.
|
345 |
-
"eval_loss": 0.
|
346 |
-
"eval_precision": 0.
|
347 |
-
"eval_recall": 0.
|
348 |
-
"eval_runtime":
|
349 |
-
"eval_samples_per_second":
|
350 |
-
"eval_steps_per_second":
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
-
"grad_norm": 0.
|
356 |
"learning_rate": 2.5e-06,
|
357 |
-
"loss": 0.
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
-
"eval_accuracy": 0.
|
363 |
-
"eval_f1": 0.
|
364 |
-
"eval_loss": 0.
|
365 |
-
"eval_precision": 0.
|
366 |
-
"eval_recall": 0.
|
367 |
-
"eval_runtime":
|
368 |
-
"eval_samples_per_second":
|
369 |
-
"eval_steps_per_second":
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
-
"grad_norm": 0.
|
375 |
"learning_rate": 0.0,
|
376 |
-
"loss": 0.
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
-
"eval_accuracy": 0.
|
382 |
-
"eval_f1": 0.
|
383 |
-
"eval_loss": 0.
|
384 |
-
"eval_precision": 0.
|
385 |
-
"eval_recall": 0.
|
386 |
-
"eval_runtime":
|
387 |
-
"eval_samples_per_second":
|
388 |
-
"eval_steps_per_second":
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 7584162436176000.0,
|
395 |
-
"train_loss": 0.
|
396 |
-
"train_runtime":
|
397 |
-
"train_samples_per_second":
|
398 |
-
"train_steps_per_second":
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 78.255126953125,
|
14 |
"learning_rate": 4.75e-05,
|
15 |
+
"loss": 0.3942,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
"eval_accuracy": 0.8796992481203008,
|
21 |
+
"eval_f1": 0.8419489007724301,
|
22 |
+
"eval_loss": 0.3128369450569153,
|
23 |
+
"eval_precision": 0.8857758620689655,
|
24 |
+
"eval_recall": 0.8173758865248226,
|
25 |
+
"eval_runtime": 1.6299,
|
26 |
+
"eval_samples_per_second": 244.801,
|
27 |
+
"eval_steps_per_second": 30.677,
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
+
"grad_norm": 42.82415771484375,
|
33 |
"learning_rate": 4.5e-05,
|
34 |
+
"loss": 0.2168,
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.8897243107769424,
|
40 |
+
"eval_f1": 0.8676337535436396,
|
41 |
+
"eval_loss": 0.3043781518936157,
|
42 |
+
"eval_precision": 0.8658613445378152,
|
43 |
+
"eval_recall": 0.8694762684124386,
|
44 |
+
"eval_runtime": 1.6375,
|
45 |
+
"eval_samples_per_second": 243.661,
|
46 |
+
"eval_steps_per_second": 30.534,
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
+
"grad_norm": 0.2970781624317169,
|
52 |
"learning_rate": 4.25e-05,
|
53 |
+
"loss": 0.1372,
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.8897243107769424,
|
59 |
+
"eval_f1": 0.8595250288055307,
|
60 |
+
"eval_loss": 0.5317866802215576,
|
61 |
+
"eval_precision": 0.885164197446576,
|
62 |
+
"eval_recall": 0.8419712675031824,
|
63 |
+
"eval_runtime": 1.6412,
|
64 |
+
"eval_samples_per_second": 243.114,
|
65 |
+
"eval_steps_per_second": 30.465,
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
+
"grad_norm": 0.16418644785881042,
|
71 |
"learning_rate": 4e-05,
|
72 |
+
"loss": 0.0957,
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.8947368421052632,
|
78 |
+
"eval_f1": 0.8765906680805938,
|
79 |
+
"eval_loss": 0.47654101252555847,
|
80 |
+
"eval_precision": 0.8675710594315245,
|
81 |
+
"eval_recall": 0.888025095471904,
|
82 |
+
"eval_runtime": 1.6551,
|
83 |
+
"eval_samples_per_second": 241.073,
|
84 |
+
"eval_steps_per_second": 30.21,
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
+
"grad_norm": 0.4955180287361145,
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
+
"loss": 0.0674,
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.8872180451127819,
|
97 |
+
"eval_f1": 0.8728804559453431,
|
98 |
+
"eval_loss": 0.552257239818573,
|
99 |
+
"eval_precision": 0.8576773985140519,
|
100 |
+
"eval_recall": 0.9027095835606473,
|
101 |
+
"eval_runtime": 1.6807,
|
102 |
+
"eval_samples_per_second": 237.402,
|
103 |
+
"eval_steps_per_second": 29.75,
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
+
"grad_norm": 0.03946012258529663,
|
109 |
"learning_rate": 3.5e-05,
|
110 |
+
"loss": 0.0535,
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.9072681704260651,
|
116 |
+
"eval_f1": 0.8878574955372402,
|
117 |
+
"eval_loss": 0.5158531069755554,
|
118 |
+
"eval_precision": 0.8888448885098087,
|
119 |
+
"eval_recall": 0.8868885251863976,
|
120 |
+
"eval_runtime": 1.6465,
|
121 |
+
"eval_samples_per_second": 242.338,
|
122 |
+
"eval_steps_per_second": 30.368,
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
+
"grad_norm": 0.008608223870396614,
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
+
"loss": 0.027,
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.8872180451127819,
|
135 |
+
"eval_f1": 0.8642908431276217,
|
136 |
+
"eval_loss": 0.5940884351730347,
|
137 |
+
"eval_precision": 0.8633964654080464,
|
138 |
+
"eval_recall": 0.8652027641389344,
|
139 |
+
"eval_runtime": 1.6485,
|
140 |
+
"eval_samples_per_second": 242.043,
|
141 |
+
"eval_steps_per_second": 30.331,
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
+
"grad_norm": 0.010127891786396503,
|
147 |
"learning_rate": 3e-05,
|
148 |
+
"loss": 0.0223,
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.8796992481203008,
|
154 |
+
"eval_f1": 0.8548827059465357,
|
155 |
+
"eval_loss": 0.7166243195533752,
|
156 |
+
"eval_precision": 0.8548827059465357,
|
157 |
+
"eval_recall": 0.8548827059465357,
|
158 |
+
"eval_runtime": 1.6562,
|
159 |
+
"eval_samples_per_second": 240.913,
|
160 |
+
"eval_steps_per_second": 30.19,
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
+
"grad_norm": 0.005933025386184454,
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
+
"loss": 0.0145,
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.9022556390977443,
|
173 |
+
"eval_f1": 0.8829621606985718,
|
174 |
+
"eval_loss": 0.7022837996482849,
|
175 |
+
"eval_precision": 0.8802419354838709,
|
176 |
+
"eval_recall": 0.8858428805237315,
|
177 |
+
"eval_runtime": 1.6595,
|
178 |
+
"eval_samples_per_second": 240.429,
|
179 |
+
"eval_steps_per_second": 30.129,
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
+
"grad_norm": 0.02505210041999817,
|
185 |
"learning_rate": 2.5e-05,
|
186 |
+
"loss": 0.0106,
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.9047619047619048,
|
192 |
+
"eval_f1": 0.8839406001224739,
|
193 |
+
"eval_loss": 0.699307918548584,
|
194 |
+
"eval_precision": 0.8880654743486602,
|
195 |
+
"eval_recall": 0.880114566284779,
|
196 |
+
"eval_runtime": 1.6551,
|
197 |
+
"eval_samples_per_second": 241.07,
|
198 |
+
"eval_steps_per_second": 30.209,
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
+
"grad_norm": 0.002501419745385647,
|
204 |
"learning_rate": 2.25e-05,
|
205 |
+
"loss": 0.0093,
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
+
"eval_accuracy": 0.8947368421052632,
|
211 |
+
"eval_f1": 0.8703663593044124,
|
212 |
+
"eval_loss": 0.8273664712905884,
|
213 |
+
"eval_precision": 0.8789149003479912,
|
214 |
+
"eval_recall": 0.8630205491907619,
|
215 |
+
"eval_runtime": 1.6583,
|
216 |
+
"eval_samples_per_second": 240.615,
|
217 |
+
"eval_steps_per_second": 30.152,
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
+
"grad_norm": 0.012166227214038372,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.0086,
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
+
"eval_accuracy": 0.8972431077694235,
|
230 |
+
"eval_f1": 0.8744522298370696,
|
231 |
+
"eval_loss": 0.7971612215042114,
|
232 |
+
"eval_precision": 0.8795731707317074,
|
233 |
+
"eval_recall": 0.8697945080923805,
|
234 |
+
"eval_runtime": 1.6712,
|
235 |
+
"eval_samples_per_second": 238.744,
|
236 |
+
"eval_steps_per_second": 29.918,
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
+
"grad_norm": 0.00197013420984149,
|
242 |
"learning_rate": 1.75e-05,
|
243 |
+
"loss": 0.0106,
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
+
"eval_accuracy": 0.8972431077694235,
|
249 |
+
"eval_f1": 0.8787009231453675,
|
250 |
+
"eval_loss": 0.7591652870178223,
|
251 |
+
"eval_precision": 0.8714896214896215,
|
252 |
+
"eval_recall": 0.8872976904891798,
|
253 |
+
"eval_runtime": 1.6672,
|
254 |
+
"eval_samples_per_second": 239.329,
|
255 |
+
"eval_steps_per_second": 29.991,
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
+
"grad_norm": 0.0050615849904716015,
|
261 |
"learning_rate": 1.5e-05,
|
262 |
+
"loss": 0.0072,
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
+
"eval_accuracy": 0.899749373433584,
|
268 |
+
"eval_f1": 0.8813841488792438,
|
269 |
+
"eval_loss": 0.7834069728851318,
|
270 |
+
"eval_precision": 0.8748029197080291,
|
271 |
+
"eval_recall": 0.8890707401345699,
|
272 |
+
"eval_runtime": 1.6555,
|
273 |
+
"eval_samples_per_second": 241.019,
|
274 |
+
"eval_steps_per_second": 30.203,
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
+
"grad_norm": 0.002086851978674531,
|
280 |
"learning_rate": 1.25e-05,
|
281 |
+
"loss": 0.0098,
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
"eval_accuracy": 0.899749373433584,
|
287 |
+
"eval_f1": 0.8802521008403361,
|
288 |
+
"eval_loss": 0.8048883676528931,
|
289 |
+
"eval_precision": 0.8767168083714847,
|
290 |
+
"eval_recall": 0.8840698308783415,
|
291 |
+
"eval_runtime": 1.6591,
|
292 |
+
"eval_samples_per_second": 240.488,
|
293 |
+
"eval_steps_per_second": 30.136,
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
+
"grad_norm": 0.0012473827227950096,
|
299 |
"learning_rate": 1e-05,
|
300 |
+
"loss": 0.0058,
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
+
"eval_accuracy": 0.899749373433584,
|
306 |
+
"eval_f1": 0.8802521008403361,
|
307 |
+
"eval_loss": 0.7670984268188477,
|
308 |
+
"eval_precision": 0.8767168083714847,
|
309 |
+
"eval_recall": 0.8840698308783415,
|
310 |
+
"eval_runtime": 1.659,
|
311 |
+
"eval_samples_per_second": 240.503,
|
312 |
+
"eval_steps_per_second": 30.138,
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
+
"grad_norm": 0.00188881263602525,
|
318 |
"learning_rate": 7.5e-06,
|
319 |
+
"loss": 0.0035,
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
+
"eval_accuracy": 0.9022556390977443,
|
325 |
+
"eval_f1": 0.8856624319419237,
|
326 |
+
"eval_loss": 0.8084732294082642,
|
327 |
+
"eval_precision": 0.8758364312267658,
|
328 |
+
"eval_recall": 0.8983451536643026,
|
329 |
+
"eval_runtime": 1.6569,
|
330 |
+
"eval_samples_per_second": 240.816,
|
331 |
+
"eval_steps_per_second": 30.177,
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
+
"grad_norm": 0.0014366944087669253,
|
337 |
"learning_rate": 5e-06,
|
338 |
+
"loss": 0.0052,
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
+
"eval_accuracy": 0.899749373433584,
|
344 |
+
"eval_f1": 0.8808243727598566,
|
345 |
+
"eval_loss": 0.7721081972122192,
|
346 |
+
"eval_precision": 0.875706963591375,
|
347 |
+
"eval_recall": 0.8865702855064557,
|
348 |
+
"eval_runtime": 1.6546,
|
349 |
+
"eval_samples_per_second": 241.143,
|
350 |
+
"eval_steps_per_second": 30.218,
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
+
"grad_norm": 0.0011094665387645364,
|
356 |
"learning_rate": 2.5e-06,
|
357 |
+
"loss": 0.0028,
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
+
"eval_accuracy": 0.8972431077694235,
|
363 |
+
"eval_f1": 0.8792560061999484,
|
364 |
+
"eval_loss": 0.8358559608459473,
|
365 |
+
"eval_precision": 0.8707622232472325,
|
366 |
+
"eval_recall": 0.889798145117294,
|
367 |
+
"eval_runtime": 1.6584,
|
368 |
+
"eval_samples_per_second": 240.592,
|
369 |
+
"eval_steps_per_second": 30.149,
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
+
"grad_norm": 0.0015741140814498067,
|
375 |
"learning_rate": 0.0,
|
376 |
+
"loss": 0.0033,
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
+
"eval_accuracy": 0.8972431077694235,
|
382 |
+
"eval_f1": 0.8792560061999484,
|
383 |
+
"eval_loss": 0.8335620164871216,
|
384 |
+
"eval_precision": 0.8707622232472325,
|
385 |
+
"eval_recall": 0.889798145117294,
|
386 |
+
"eval_runtime": 1.6776,
|
387 |
+
"eval_samples_per_second": 237.834,
|
388 |
+
"eval_steps_per_second": 29.804,
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 7584162436176000.0,
|
395 |
+
"train_loss": 0.05526667458356404,
|
396 |
+
"train_runtime": 862.9394,
|
397 |
+
"train_samples_per_second": 84.316,
|
398 |
+
"train_steps_per_second": 2.828
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|