# coding=utf-8 # Copyright 2025 Infini-AI and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Megrez model.""" import math import warnings from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import (BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast) from transformers.modeling_utils import PreTrainedModel from transformers.models.llama.modeling_llama import LlamaAttention, LlamaRotaryEmbedding from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 from transformers.utils import (add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings) from transformers.utils.import_utils import is_torch_fx_available from .configuration_aquif_alphamoe import AquifAlphaMoEConfig # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. # It means that the function will not be traced through and simply appear as a node in the graph. if is_torch_fx_available(): if not is_torch_greater_or_equal_than_1_13: import torch.fx _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "AquifAlphaMoEConfig" class AquifAlphaMoERMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ AquifAlphaMoERMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) ALL_LAYERNORM_LAYERS.append(AquifAlphaMoERMSNorm) class AquifAlphaMoEMLP(nn.Module): def __init__(self, config, hidden_size=None, intermediate_size=None): super().__init__() self.config = config self.hidden_size = config.hidden_size if hidden_size is None else hidden_size self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class MoEGate(nn.Module): def __init__(self, config): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.routed_scaling_factor = config.routed_scaling_factor self.scoring_func = config.scoring_func self.topk_method = config.topk_method self.n_group = config.n_group self.topk_group = config.topk_group # topk selection algorithm self.norm_topk_prob = config.norm_topk_prob self.gating_dim = config.hidden_size self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) if self.topk_method == "noaux_tc": self.e_score_correction_bias = nn.Parameter( torch.empty((self.n_routed_experts)) ) self.reset_parameters() def reset_parameters(self) -> None: import torch.nn.init as init init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape ### compute gating score hidden_states = hidden_states.view(-1, h) logits = F.linear( hidden_states.type(torch.float32), self.weight.type(torch.float32), None ) if self.scoring_func == "sigmoid": scores = logits.sigmoid() else: raise NotImplementedError( f"insupportable scoring function for MoE gating: {self.scoring_func}" ) ### select top-k experts if self.topk_method == "noaux_tc": assert not self.training scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) group_scores = ( scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1) ) # [n, n_group] group_idx = torch.topk( group_scores, k=self.topk_group, dim=-1, sorted=False )[ 1 ] # [n, top_k_group] group_mask = torch.zeros_like(group_scores) # [n, n_group] group_mask.scatter_(1, group_idx, 1) # [n, n_group] score_mask = ( group_mask.unsqueeze(-1) .expand( bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group ) .reshape(bsz * seq_len, -1) ) # [n, e] tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), float("-inf")) # [n, e] _, topk_idx = torch.topk( tmp_scores, k=self.top_k, dim=-1, sorted=False ) topk_weight = scores.gather(1, topk_idx) else: raise NotImplementedError( f"insupportable TopK function for MoE gating: {self.topk_method}" ) ### norm gate to sum 1 if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor return topk_idx, topk_weight class AquifAlphaMoEMoE(nn.Module): """ A mixed expert module containing shared experts. """ def __init__(self, config, layer_number, init_experts: bool = True): super().__init__() self.layer_number = layer_number self.config = config self.num_experts_per_tok = config.num_experts_per_tok if hasattr(config, "ep_size") and config.ep_size > 1: assert config.ep_size == dist.get_world_size() self.ep_size = config.ep_size self.experts_per_rank = config.n_routed_experts // config.ep_size self.ep_rank = dist.get_rank() if init_experts: self.experts = nn.ModuleList( [ ( AquifAlphaMoEMLP(config, intermediate_size=config.moe_intermediate_size) if i >= self.ep_rank * self.experts_per_rank and i < (self.ep_rank + 1) * self.experts_per_rank else None ) for i in range(config.n_routed_experts) ] ) else: self.experts = None else: self.ep_size = 1 self.experts_per_rank = config.n_routed_experts self.ep_rank = 0 if init_experts: self.experts = nn.ModuleList( [ AquifAlphaMoEMLP(config, intermediate_size=config.moe_intermediate_size) for i in range(config.n_routed_experts) ] ) else: self.experts = None self.gate = MoEGate(config) if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = AquifAlphaMoEMLP(config=config, intermediate_size=intermediate_size) def set_experts(self, experts): self.experts = experts def forward(self, hidden_states, pre_gate_hidden_states=None): identity = hidden_states orig_shape = hidden_states.shape if pre_gate_hidden_states is not None: topk_idx, topk_weight = self.gate(pre_gate_hidden_states) else: topk_idx, topk_weight = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) flat_topk_idx = topk_idx.view(-1) if self.training: hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0) y = torch.empty_like(hidden_states) for i, expert in enumerate(self.experts): y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.to(hidden_states.dtype).view(*orig_shape) else: y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) if self.config.n_shared_experts is not None: shared_out = self.shared_experts(identity) y = y + shared_out # y = y + self.shared_experts(identity) return y @torch.no_grad() def moe_infer(self, x, topk_ids, topk_weight): cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) cnts.scatter_(1, topk_ids, 1) tokens_per_expert = cnts.sum(dim=0) idxs = topk_ids.view(-1).argsort() sorted_tokens = x[idxs // topk_ids.shape[1]] sorted_tokens_shape = sorted_tokens.shape if self.ep_size > 1: tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) tokens_per_expert_group = tokens_per_expert.new_empty(tokens_per_expert.shape[0]) dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) output_splits = tokens_per_expert_group.view(self.ep_size, -1).sum(1).cpu().numpy().tolist() gathered_tokens = sorted_tokens.new_empty( tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] ) input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() dist.all_to_all( list(gathered_tokens.split(output_splits)), list(sorted_tokens.split(input_split_sizes)), ) tokens_per_expert_post_gather = tokens_per_expert_group.view(self.ep_size, self.experts_per_rank).sum(dim=0) gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) s = 0 for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): gatherd_idxs[s : s + k] = i % self.experts_per_rank s += k gatherd_idxs = gatherd_idxs.argsort() sorted_tokens = gathered_tokens[gatherd_idxs] tokens_per_expert = tokens_per_expert_post_gather tokens_per_expert = tokens_per_expert.cpu().numpy() outputs = [] start_idx = 0 for i, num_tokens in enumerate(tokens_per_expert): end_idx = start_idx + num_tokens if num_tokens == 0: continue expert = self.experts[i + self.ep_rank * self.experts_per_rank] tokens_for_this_expert = sorted_tokens[start_idx:end_idx] expert_out = expert(tokens_for_this_expert) outputs.append(expert_out) start_idx = end_idx outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) if self.ep_size > 1: new_x = torch.empty_like(outs) new_x[gatherd_idxs] = outs gathered_tokens = new_x.new_empty(*sorted_tokens_shape) dist.all_to_all( list(gathered_tokens.split(input_split_sizes)), list(new_x.split(output_splits)), ) outs = gathered_tokens new_x = torch.empty_like(outs) new_x[idxs] = outs final_out = ( new_x.view(*topk_ids.shape, -1) .type(topk_weight.dtype) .mul_(topk_weight.unsqueeze(dim=-1)) .sum(dim=1) .type(new_x.dtype) ) return final_out # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class AquifAlphaMoEDecoderLayer(nn.Module): def __init__(self, config: AquifAlphaMoEConfig, layer_idx: int): super().__init__() self.config = config self.layer_number = layer_idx self.experts_shared = ( config.experts_shared_frequency is not None and layer_idx >= self.config.first_k_dense_replace ) self.pre_gate = config.pre_gate self.hidden_size = config.hidden_size is_moe = ( config.n_routed_experts is not None and layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0 ) init_experts = (layer_idx - config.first_k_dense_replace) % config.experts_shared_frequency == 0 self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx) self.mlp = AquifAlphaMoEMoE(config, layer_idx, init_experts) if is_moe else AquifAlphaMoEMLP(config) self.input_layernorm = AquifAlphaMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = AquifAlphaMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if self.pre_gate and self.layer_number >= self.config.first_k_dense_replace: hidden_states = torch.split(hidden_states, hidden_states.shape[0] // 2, dim=0) pre_gate_hidden_states = hidden_states[0] hidden_states = hidden_states[1] else: pre_gate_hidden_states = None if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) post_attention_layernorm_hidden_states = hidden_states if isinstance(self.mlp, AquifAlphaMoEMoE): hidden_states = self.mlp(hidden_states, pre_gate_hidden_states=pre_gate_hidden_states) else: hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states pre_gate_hidden_states = post_attention_layernorm_hidden_states if self.pre_gate and self.layer_number < self.config.num_hidden_layers - 1: hidden_states = torch.cat([pre_gate_hidden_states, hidden_states], dim=0) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs AquifAlphaMoE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`AquifAlphaMoEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare AquifAlphaMoE Model outputting raw hidden-states without any specific head on top.", AquifAlphaMoE_START_DOCSTRING, ) class AquifAlphaMoEPreTrainedModel(PreTrainedModel): config_class = AquifAlphaMoEConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["AquifAlphaMoEDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() AquifAlphaMoE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare AquifAlphaMoE Model outputting raw hidden-states without any specific head on top.", AquifAlphaMoE_START_DOCSTRING, ) class AquifAlphaMoEModel(AquifAlphaMoEPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquifAlphaMoEDecoderLayer`] Args: config: AquifAlphaMoEConfig """ def __init__(self, config: AquifAlphaMoEConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.rotary_emb = LlamaRotaryEmbedding(config=config) self.layers = nn.ModuleList( [AquifAlphaMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.norm = AquifAlphaMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(AquifAlphaMoE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, **flash_attn_kwargs, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None position_embeddings = self.rotary_emb(hidden_states, position_ids=position_ids) for layer_idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) shared_layer_idx = ( (layer_idx - self.config.first_k_dense_replace) // self.config.experts_shared_frequency * self.config.experts_shared_frequency + self.config.first_k_dense_replace ) if layer_idx >= self.config.first_k_dense_replace and shared_layer_idx != layer_idx: decoder_layer.mlp.set_experts(self.layers[shared_layer_idx].mlp.experts) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, position_embeddings, **flash_attn_kwargs, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, **flash_attn_kwargs, ) if layer_idx >= self.config.first_k_dense_replace and shared_layer_idx != layer_idx: decoder_layer.mlp.set_experts(None) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) class AquifAlphaMoEForCausalLM(AquifAlphaMoEPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = AquifAlphaMoEModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(AquifAlphaMoE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, AquifAlphaMoEForCausalLM >>> model = AquifAlphaMoEForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens # max_cache_length = past_key_values.get_max_length() max_cache_length = past_key_values.get_max_cache_shape() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The AquifAlphaMoE Model transformer with a sequence classification head on top (linear layer). [`AquifAlphaMoEForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, AquifAlphaMoE_START_DOCSTRING, ) class AquifAlphaMoEForSequenceClassification(AquifAlphaMoEPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = AquifAlphaMoEModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(AquifAlphaMoE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( logits.device ) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )