File size: 10,772 Bytes
cfa091b ca1b0b3 cfa091b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
---
license: mit
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ns
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
library_name: transformers
inference: false
---
<style>
:root{
--bg: #0b0c0f;
--panel: #0f1117;
--ink: #e9eefc;
--muted: #9aa3b2;
--brand: #433aac; /* purple */
--brand-2: #6b4fe8; /* lighter purple accent */
--border: rgba(255,255,255,.08);
--glow: rgba(67,58,172,.25);
--radius: 16px;
}
*{ box-sizing: border-box }
body{ margin: 0; padding: 28px; background: var(--bg); color: var(--muted); font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; }
.card{
background: linear-gradient(180deg,rgba(255,255,255,.02),rgba(255,255,255,.00));
border:1px solid var(--border);
border-radius: var(--radius);
padding:16px;
}
.badge{
display:inline-flex;align-items:center;gap:.5rem;
padding:.35rem .6rem;border:1px solid var(--border);border-radius:999px;
color:var(--muted);font-size:.85rem
}
.grid{ display:grid; gap:18px }
.grid-2{ grid-template-columns:repeat(2,minmax(0,1fr)); }
.grid-3{ grid-template-columns:repeat(3,minmax(0,1fr)); }
@media(max-width:900px){ .grid-2,.grid-3{ grid-template-columns:1fr } }
.kicker{
display:inline-block;letter-spacing:.12em;text-transform:uppercase;
color:var(--muted);font-size:.75rem;margin-bottom:.5rem
}
h1,h2,h3{ color:var(--ink); margin:0 0 .4rem 0; line-height:1.1 }
h1{ font-size:2.25rem; font-weight:800 }
h2{ font-size:1.3rem; font-weight:700 }
h3{ font-size:1.05rem; font-weight:700 }
p,li{ color:var(--muted); line-height:1.6 }
hr{ border:none; height:1px; background:var(--border); margin:28px 0 }
a.btn{
display:inline-block; padding:.7rem 1rem; border-radius:12px;
background: linear-gradient(180deg,var(--brand),#3a2d98);
color:var(--ink); text-decoration:none; font-weight:600;
box-shadow: 0 10px 30px var(--glow);
}
a.btn.ghost{
background:transparent; color:var(--ink); border:1px solid var(--border)
}
kbd{
background:#0c1322;color:#cfe0ff;border:1px solid #1a2742;border-bottom-color:#142138;
padding:.12rem .4rem;border-radius:6px;font-size:.85rem
}
.codeblock{
background:#0b1220;border:1px solid #15233d;border-radius:12px;padding: 8px;overflow:auto;
margin: 1rem 0;
}
.codeblock pre {
margin: 0;
color: var(--ink);
}
.tagline{
font-size:1.05rem;color:#c6d5ff
}
.pill{
display:inline-flex;align-items:center;gap:.4rem;
padding:.35rem .6rem;border-radius:999px;border:1px dashed var(--border);color:#b9c5db
}
.hero{
background:
radial-gradient(600px 240px at 20% 0%,rgba(67,58,172,.18),transparent 60%),
radial-gradient(600px 240px at 80% 10%,rgba(107,79,232,.12),transparent 60%);
border:1px solid var(--border);
border-radius:20px; padding:28px
}
details{
border:1px solid var(--border);border-radius:12px;padding:14px;background:rgba(255,255,255,.02)
}
summary{ cursor:pointer;color:var(--ink);font-weight:700 }
blockquote{
margin:0;padding:14px;border-left:3px solid var(--brand);background:rgba(67,58,172,.06);
border-radius:0 10px 10px 0;color:#8f7ce8
}
table{ width:100%; border-collapse:collapse; margin: 1rem 0; }
th,td{ text-align:left; padding:10px; border-bottom:1px solid var(--border); color:var(--muted); font-size: .9rem; }
th{ color:var(--brand-2); font-weight: 700; }
.callout{
border:1px solid var(--border);border-radius:14px;padding:14px;background:rgba(255,255,255,.02)
}
.metadata{
background: #0a0b0e; border: 1px solid var(--border); border-radius: 12px;
padding: 16px; margin-bottom: 24px; font-family: 'Monaco', 'Menlo', monospace;
font-size: .85rem; color: #8a91a3;
}
</style>
<div class="hero">
<div class="kicker">Open Models</div>
<h1>Aqui-open1 Model Family</h1>
<p class="tagline">We hereby present the first series of small open models by Aqui, trained from scratch and with an MIT license. The open1 family delivers state-of-the-art performance across reasoning, mathematics, and coding tasks while maintaining efficient inference capabilities.</p>
<div style="margin-top: 20px; display: flex; gap: 12px; flex-wrap: wrap;">
<div class="pill">π Released September 7, 2025</div>
<div class="pill">π MIT Licensed</div>
<div class="pill">β‘ Efficient Architecture</div>
</div>
</div>
<div class="grid grid-2" style="margin-top: 28px;">
<div class="card">
<h2>open1-1.5B-Instruct</h2>
<p>Ultra-efficient model optimized for edge deployment and real-time applications.</p>
<div style="margin: 16px 0;">
<div class="badge">π§ 1.5B parameters</div>
<div class="badge">π 128K context</div>
<div class="badge">β‘ Fast inference</div>
</div>
<a href="https://huggingface.co/aquigpt/open1-1.5B-Instruct" class="btn">View Model</a>
</div>
<div class="card">
<h2>open1-7.5B-Instruct</h2>
<p>Balanced model providing exceptional performance across diverse tasks with reasonable compute requirements.</p>
<div style="margin: 16px 0;">
<div class="badge">π§ 7.5B parameters</div>
<div class="badge">π 32K context</div>
<div class="badge">π― High accuracy</div>
</div>
<a href="https://huggingface.co/aquigpt/open1-7.5B-Instruct" class="btn">View Model</a>
</div>
</div>
<div class="callout" style="margin: 28px 0;">
<h3>π Coming This Week</h3>
<p><strong>Aqui-open1-4x8B</strong> β Our biggest non-thinking open model, head-to-head against Qwen3 32B and Llama 3.3 70B. Stay tuned for the most capable open model in the series.</p>
</div>
<hr>
<h2>Benchmark Performance</h2>
<h3>1.5B Model Comparison</h3>
<table>
<thead>
<tr>
<th>Metric</th>
<th>open1-1.5B-Instruct</th>
<th>Llama-3.2-1B-Instruct</th>
<th>LFM2-1.2B</th>
<th>Qwen3-1.7B</th>
<th>Gemma-3-1B-it</th>
<th>SmolLM2-1.7B-Instruct</th>
</tr>
</thead>
<tbody>
<tr><td>MMLU</td><td><strong>58.5</strong></td><td>46.6</td><td>55.2</td><td>59.1</td><td>40.1</td><td>42.3</td></tr>
<tr><td>GPQA</td><td><strong>32.3</strong></td><td>28.8</td><td>31.5</td><td>27.7</td><td>21.1</td><td>22.1</td></tr>
<tr><td>GSM8K</td><td><strong>62.6</strong></td><td>35.7</td><td>58.3</td><td>51.4</td><td>59.6</td><td>48.2</td></tr>
<tr><td>IFEval</td><td>72.7</td><td>52.4</td><td><strong>74.9</strong></td><td>74.0</td><td>62.9</td><td>56.7</td></tr>
<tr><td>MGSM</td><td>59.1</td><td>29.1</td><td>55.0</td><td><strong>66.6</strong></td><td>43.6</td><td>38.5</td></tr>
<tr style="border-top: 2px solid var(--brand);"><td><strong>Average</strong></td><td><strong>57.0</strong></td><td>38.5</td><td>55.0</td><td>55.8</td><td>45.5</td><td>41.6</td></tr>
</tbody>
</table>
<h3>7.5B Model Comparison</h3>
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>open1-7.5B-Instruct</th>
<th>Llama-3.1-8B-Instruct</th>
<th>LFM-7B</th>
<th>Qwen3-8B</th>
<th>Gemma-3-12B-it</th>
<th>Nemotron-Nano-9B-v2</th>
</tr>
</thead>
<tbody>
<tr><td>MMLU</td><td><strong>75.8</strong></td><td>68.7</td><td>69.4</td><td>71.6</td><td>72.5</td><td>74.5</td></tr>
<tr><td>HumanEval</td><td>82.3</td><td>71.7</td><td>70.1</td><td>84.8</td><td>84.8</td><td><strong>86.2</strong></td></tr>
<tr><td>GPQA Diamond</td><td><strong>52.2</strong></td><td>25.9</td><td>32.9</td><td>45.2</td><td>34.9</td><td>40.8</td></tr>
<tr><td>IFEval</td><td>78.9</td><td>77.0</td><td>71.6</td><td>83.4</td><td>81.5</td><td><strong>84.3</strong></td></tr>
<tr><td>AIME 2025</td><td>18.9</td><td>4.3</td><td>2.1</td><td><strong>20.2</strong></td><td>18.3</td><td>20.1</td></tr>
<tr style="border-top: 2px solid var(--brand);"><td><strong>Average</strong></td><td><strong>61.6</strong></td><td>49.5</td><td>49.2</td><td>61.0</td><td>58.4</td><td>61.2</td></tr>
</tbody>
</table>
<hr>
<h2>Key Features</h2>
<div class="grid grid-2">
<div class="card">
<h3>π― Superior Reasoning</h3>
<p>Exceptional performance on MMLU, GPQA, and mathematical reasoning tasks, outperforming models of similar and larger sizes.</p>
</div>
<div class="card">
<h3>β‘ Optimized Architecture</h3>
<p>Efficient transformer design enabling fast inference while maintaining high accuracy across diverse benchmarks.</p>
</div>
<div class="card">
<h3>π Multilingual Support</h3>
<p>Trained on 20+ languages with robust performance across linguistic boundaries and cultural contexts.</p>
</div>
<div class="card">
<h3>π MIT Licensed</h3>
<p>Complete freedom for commercial use, modification, and redistribution with minimal restrictions.</p>
</div>
</div>
<hr>
<h2>Usage</h2>
<div class="codeblock">
<pre>
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("aquigpt/open1-1.5B-Instruct")
model = AutoModelForCausalLM.from_pretrained("aquigpt/open1-1.5B-Instruct")
# Generate text
inputs = tokenizer("Explain quantum computing:", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
</pre>
</div>
<details>
<summary>Training Details</summary>
<p>The open1 models were trained from scratch on a diverse, high-quality dataset spanning code, mathematics, reasoning, and multilingual text. Training utilized advanced techniques including:</p>
<ul>
<li>Supervised fine-tuning on instruction-following data</li>
<li>Constitutional AI for alignment and safety</li>
<li>Advanced attention mechanisms for extended context</li>
<li>Multi-stage training with curriculum learning</li>
</ul>
</details>
<blockquote>
<strong>Note:</strong> These models are designed for research and commercial applications. While they demonstrate strong performance, users should conduct appropriate testing for their specific use cases.
</blockquote>
<div style="text-align: center; margin-top: 40px; color: var(--muted);">
<p>Built with β€οΈ by the Aqui team β’ MIT β’ September 2025</p>
</div> |