File size: 10,772 Bytes
cfa091b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1b0b3
cfa091b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
license: mit
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ns
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
library_name: transformers
inference: false
---

<style>
    :root{
      --bg: #0b0c0f;
      --panel: #0f1117;
      --ink: #e9eefc;
      --muted: #9aa3b2;
      --brand: #433aac; /* purple */
      --brand-2: #6b4fe8; /* lighter purple accent */
      --border: rgba(255,255,255,.08);
      --glow: rgba(67,58,172,.25);
      --radius: 16px;
    }
    *{ box-sizing: border-box }
    body{ margin: 0; padding: 28px; background: var(--bg); color: var(--muted); font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; }
    .card{
      background: linear-gradient(180deg,rgba(255,255,255,.02),rgba(255,255,255,.00));
      border:1px solid var(--border);
      border-radius: var(--radius);
      padding:16px;
    }
    .badge{
      display:inline-flex;align-items:center;gap:.5rem;
      padding:.35rem .6rem;border:1px solid var(--border);border-radius:999px;
      color:var(--muted);font-size:.85rem
    }
    .grid{ display:grid; gap:18px }
    .grid-2{ grid-template-columns:repeat(2,minmax(0,1fr)); }
    .grid-3{ grid-template-columns:repeat(3,minmax(0,1fr)); }
    @media(max-width:900px){ .grid-2,.grid-3{ grid-template-columns:1fr } }
    .kicker{
      display:inline-block;letter-spacing:.12em;text-transform:uppercase;
      color:var(--muted);font-size:.75rem;margin-bottom:.5rem
    }
    h1,h2,h3{ color:var(--ink); margin:0 0 .4rem 0; line-height:1.1 }
    h1{ font-size:2.25rem; font-weight:800 }
    h2{ font-size:1.3rem; font-weight:700 }
    h3{ font-size:1.05rem; font-weight:700 }
    p,li{ color:var(--muted); line-height:1.6 }
    hr{ border:none; height:1px; background:var(--border); margin:28px 0 }
    a.btn{
      display:inline-block; padding:.7rem 1rem; border-radius:12px;
      background: linear-gradient(180deg,var(--brand),#3a2d98);
      color:var(--ink); text-decoration:none; font-weight:600;
      box-shadow: 0 10px 30px var(--glow);
    }
    a.btn.ghost{
      background:transparent; color:var(--ink); border:1px solid var(--border)
    }
    kbd{
      background:#0c1322;color:#cfe0ff;border:1px solid #1a2742;border-bottom-color:#142138;
      padding:.12rem .4rem;border-radius:6px;font-size:.85rem
    }
    .codeblock{
      background:#0b1220;border:1px solid #15233d;border-radius:12px;padding: 8px;overflow:auto;
      margin: 1rem 0;
    }
    .codeblock pre {
      margin: 0;
      color: var(--ink);
    }
    .tagline{
      font-size:1.05rem;color:#c6d5ff
    }
    .pill{
      display:inline-flex;align-items:center;gap:.4rem;
      padding:.35rem .6rem;border-radius:999px;border:1px dashed var(--border);color:#b9c5db
    }
    .hero{
      background:
        radial-gradient(600px 240px at 20% 0%,rgba(67,58,172,.18),transparent 60%),
        radial-gradient(600px 240px at 80% 10%,rgba(107,79,232,.12),transparent 60%);
      border:1px solid var(--border);
      border-radius:20px; padding:28px
    }
    details{
      border:1px solid var(--border);border-radius:12px;padding:14px;background:rgba(255,255,255,.02)
    }
    summary{ cursor:pointer;color:var(--ink);font-weight:700 }
    blockquote{
      margin:0;padding:14px;border-left:3px solid var(--brand);background:rgba(67,58,172,.06);
      border-radius:0 10px 10px 0;color:#8f7ce8
    }
    table{ width:100%; border-collapse:collapse; margin: 1rem 0; }
    th,td{ text-align:left; padding:10px; border-bottom:1px solid var(--border); color:var(--muted); font-size: .9rem; }
    th{ color:var(--brand-2); font-weight: 700; }
    .callout{
      border:1px solid var(--border);border-radius:14px;padding:14px;background:rgba(255,255,255,.02)
    }
    .metadata{
      background: #0a0b0e; border: 1px solid var(--border); border-radius: 12px; 
      padding: 16px; margin-bottom: 24px; font-family: 'Monaco', 'Menlo', monospace; 
      font-size: .85rem; color: #8a91a3;
    }
</style>

<div class="hero">
    <div class="kicker">Open Models</div>
    <h1>Aqui-open1 Model Family</h1>
    <p class="tagline">We hereby present the first series of small open models by Aqui, trained from scratch and with an MIT license. The open1 family delivers state-of-the-art performance across reasoning, mathematics, and coding tasks while maintaining efficient inference capabilities.</p>
    
  <div style="margin-top: 20px; display: flex; gap: 12px; flex-wrap: wrap;">
      <div class="pill">πŸš€ Released September 7, 2025</div>
      <div class="pill">πŸ”“ MIT Licensed</div>
      <div class="pill">⚑ Efficient Architecture</div>
  </div>
</div>

<div class="grid grid-2" style="margin-top: 28px;">
    <div class="card">
        <h2>open1-1.5B-Instruct</h2>
        <p>Ultra-efficient model optimized for edge deployment and real-time applications.</p>
        <div style="margin: 16px 0;">
            <div class="badge">🧠 1.5B parameters</div>
            <div class="badge">πŸ“ 128K context</div>
            <div class="badge">⚑ Fast inference</div>
        </div>
        <a href="https://huggingface.co/aquigpt/open1-1.5B-Instruct" class="btn">View Model</a>
    </div>
    
  <div class="card">
      <h2>open1-7.5B-Instruct</h2>
      <p>Balanced model providing exceptional performance across diverse tasks with reasonable compute requirements.</p>
      <div style="margin: 16px 0;">
          <div class="badge">🧠 7.5B parameters</div>
          <div class="badge">πŸ“ 32K context</div>
          <div class="badge">🎯 High accuracy</div>
      </div>
      <a href="https://huggingface.co/aquigpt/open1-7.5B-Instruct" class="btn">View Model</a>
  </div>
</div>

<div class="callout" style="margin: 28px 0;">
    <h3>πŸ”œ Coming This Week</h3>
    <p><strong>Aqui-open1-4x8B</strong> β€” Our biggest non-thinking open model, head-to-head against Qwen3 32B and Llama 3.3 70B. Stay tuned for the most capable open model in the series.</p>
</div>

<hr>

<h2>Benchmark Performance</h2>

<h3>1.5B Model Comparison</h3>
<table>
    <thead>
        <tr>
            <th>Metric</th>
            <th>open1-1.5B-Instruct</th>
            <th>Llama-3.2-1B-Instruct</th>
            <th>LFM2-1.2B</th>
            <th>Qwen3-1.7B</th>
            <th>Gemma-3-1B-it</th>
            <th>SmolLM2-1.7B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr><td>MMLU</td><td><strong>58.5</strong></td><td>46.6</td><td>55.2</td><td>59.1</td><td>40.1</td><td>42.3</td></tr>
        <tr><td>GPQA</td><td><strong>32.3</strong></td><td>28.8</td><td>31.5</td><td>27.7</td><td>21.1</td><td>22.1</td></tr>
        <tr><td>GSM8K</td><td><strong>62.6</strong></td><td>35.7</td><td>58.3</td><td>51.4</td><td>59.6</td><td>48.2</td></tr>
        <tr><td>IFEval</td><td>72.7</td><td>52.4</td><td><strong>74.9</strong></td><td>74.0</td><td>62.9</td><td>56.7</td></tr>
        <tr><td>MGSM</td><td>59.1</td><td>29.1</td><td>55.0</td><td><strong>66.6</strong></td><td>43.6</td><td>38.5</td></tr>
        <tr style="border-top: 2px solid var(--brand);"><td><strong>Average</strong></td><td><strong>57.0</strong></td><td>38.5</td><td>55.0</td><td>55.8</td><td>45.5</td><td>41.6</td></tr>
    </tbody>
</table>

<h3>7.5B Model Comparison</h3>
<table>
    <thead>
        <tr>
            <th>Benchmark</th>
            <th>open1-7.5B-Instruct</th>
            <th>Llama-3.1-8B-Instruct</th>
            <th>LFM-7B</th>
            <th>Qwen3-8B</th>
            <th>Gemma-3-12B-it</th>
            <th>Nemotron-Nano-9B-v2</th>
        </tr>
    </thead>
    <tbody>
        <tr><td>MMLU</td><td><strong>75.8</strong></td><td>68.7</td><td>69.4</td><td>71.6</td><td>72.5</td><td>74.5</td></tr>
        <tr><td>HumanEval</td><td>82.3</td><td>71.7</td><td>70.1</td><td>84.8</td><td>84.8</td><td><strong>86.2</strong></td></tr>
        <tr><td>GPQA Diamond</td><td><strong>52.2</strong></td><td>25.9</td><td>32.9</td><td>45.2</td><td>34.9</td><td>40.8</td></tr>
        <tr><td>IFEval</td><td>78.9</td><td>77.0</td><td>71.6</td><td>83.4</td><td>81.5</td><td><strong>84.3</strong></td></tr>
        <tr><td>AIME 2025</td><td>18.9</td><td>4.3</td><td>2.1</td><td><strong>20.2</strong></td><td>18.3</td><td>20.1</td></tr>
        <tr style="border-top: 2px solid var(--brand);"><td><strong>Average</strong></td><td><strong>61.6</strong></td><td>49.5</td><td>49.2</td><td>61.0</td><td>58.4</td><td>61.2</td></tr>
    </tbody>
</table>

<hr>

<h2>Key Features</h2>

<div class="grid grid-2">
    <div class="card">
        <h3>🎯 Superior Reasoning</h3>
        <p>Exceptional performance on MMLU, GPQA, and mathematical reasoning tasks, outperforming models of similar and larger sizes.</p>
    </div>
    
  <div class="card">
      <h3>⚑ Optimized Architecture</h3>
      <p>Efficient transformer design enabling fast inference while maintaining high accuracy across diverse benchmarks.</p>
  </div>
  
  <div class="card">
      <h3>🌍 Multilingual Support</h3>
      <p>Trained on 20+ languages with robust performance across linguistic boundaries and cultural contexts.</p>
  </div>
  
  <div class="card">
      <h3>πŸ”“ MIT Licensed</h3>
      <p>Complete freedom for commercial use, modification, and redistribution with minimal restrictions.</p>
  </div>
</div>

<hr>

<h2>Usage</h2>

<div class="codeblock">
  <pre>
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    # Load the model and tokenizer
    tokenizer = AutoTokenizer.from_pretrained("aquigpt/open1-1.5B-Instruct")
    model = AutoModelForCausalLM.from_pretrained("aquigpt/open1-1.5B-Instruct")
    
    # Generate text
    inputs = tokenizer("Explain quantum computing:", return_tensors="pt")
    outputs = model.generate(**inputs, max_length=200, temperature=0.7)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
  </pre>
</div>

<details>
    <summary>Training Details</summary>
    <p>The open1 models were trained from scratch on a diverse, high-quality dataset spanning code, mathematics, reasoning, and multilingual text. Training utilized advanced techniques including:</p>
    <ul>
        <li>Supervised fine-tuning on instruction-following data</li>
        <li>Constitutional AI for alignment and safety</li>
        <li>Advanced attention mechanisms for extended context</li>
        <li>Multi-stage training with curriculum learning</li>
    </ul>
</details>

<blockquote>
    <strong>Note:</strong> These models are designed for research and commercial applications. While they demonstrate strong performance, users should conduct appropriate testing for their specific use cases.
</blockquote>

<div style="text-align: center; margin-top: 40px; color: var(--muted);">
    <p>Built with ❀️ by the Aqui team β€’ MIT β€’ September 2025</p>
</div>